Med-books.by - Библиотека медицинской литературы. Книги, справочники, лекции, аудиокниги по медицине. Банк рефератов. Медицинские рефераты. Всё для студента-медика.
Скачать бесплатно без регистрации или купить электронные и печатные бумажные медицинские книги (DJVU, PDF, DOC, CHM, FB2, TXT), истории болезней, рефераты, монографии, лекции, презентации по медицине.


=> Книги / Медицинская литература: Акупунктура | Акушерство | Аллергология и иммунология | Анатомия человека | Английский язык | Анестезиология и реаниматология | Антропология | БиоХимия | Валеология | Ветеринария | Внутренние болезни (Терапия) | Военная медицина | Гастроэнтерология | Гематология | Генетика | География | Геронтология и гериатрия | Гигиена | Гинекология | Гистология, Цитология, Эмбриология | Гомеопатия | ДерматоВенерология | Диагностика / Методы исследования | Диетология | Инфекционные болезни | История медицины | Йога | Кардиология | Книги о здоровье | Косметология | Латинский язык | Логопедия | Массаж | Математика | Медицина Экстремальных Ситуаций | Медицинская биология | Медицинская информатика | Медицинская статистика | Медицинская этика | Медицинские приборы и аппараты | Медицинское материаловедение | Микробиология | Наркология | Неврология и нейрохирургия | Нефрология | Нормальная физиология | Общий уход | О достижении успеха в жизни | ОЗЗ | Онкология | Оториноларингология | Офтальмология | Паллиативная медицина | Паразитология | Патологическая анатомия | Патологическая физиология | Педиатрия | Поликлиническая терапия | Пропедевтика внутренних болезней | Профессиональные болезни | Психиатрия-Психология | Пульмонология | Ревматология | Сестринское дело | Социальная медицина | Спортивная медицина | Стоматология | Судебная медицина | Тибетская медицина | Топографическая анатомия и оперативная хирургия | Травматология и ортопедия | Ультразвуковая диагностика (УЗИ) | Урология | Фармакология | Физика | Физиотерапия | Физическая культура | Философия | Фтизиатрия | Химия | Хирургия | Экологическая медицина | Экономическая теория | Эндокринология | Эпидемиология | Ядерная медицина

=> Истории болезней: Акушерство | Аллергология и иммунология | Ангиология | Внутренние болезни (Терапия) | Гастроэнтерология | Гематология | Гинекология | ДерматоВенерология | Инфекционные болезни | Кардиология | Наркология | Неврология | Нефрология | Онкология | Оториноларингология | Офтальмология | Педиатрия | Профессиональные болезни | Психиатрия | Пульмонология | Ревматология | Стоматология | Судебная медицина | Травматология и ортопедия | Урология | Фтизиатрия | Хирургия | Эндокринология

=> Рефераты / Лекции: Акушерство | Аллергология и иммунология | Анатомия человека | Анестезиология и реаниматология | Биология | Биохимия | Валеология | Ветеринария | Внутренние болезни (Терапия) | Гастроэнтерология | Генетика | Гигиена | Гинекология | Гистология, Цитология, Эмбриология | Диагностика | ДерматоВенерология | Инфекционные болезни | История медицины | Лечебная физкультура / Физическая культура | Кардиология | Массаж | Медицинская реабилитация | Микробиология | Наркология | Неврология | Нефрология | Нормальная физиология | Общий уход / Сестринское дело | Озз | Онкология | Оториноларингология | Офтальмология | Патологическая анатомия | Педиатрия | ПатоФизиология | Профессиональные болезни | Психиатрия-Психология | Пульмонология | Ревматология | Скорая и неотложная медицинская помощь | Стоматология | Судебная медицина | Токсикология | Травматология и ортопедия | Урология | Фармакогнозия | Фармакология | Фармация | Физиотерапия | Фтизиатрия | Химия | Хирургия | Эндокринология | Эпидемиология | Этика и деонтология

=> Другие разделы: Авторы | Видео | Клинические протоколы / Нормативная документация РБ | Красота и здоровье | Медицинские журналы | Медицинские статьи | Наука и техника | Новости сайта | Практические навыки | Презентации | Шпаргалки


Med-books.by - Библиотека медицинской литературы » Рефераты: Офтальмология » Реферат: Применение лазеров в офтальмологии

Реферат: Применение лазеров в офтальмологии

0

Скачать бесплатно реферат:
«Применение лазеров в офтальмологии»


Содержание

Введение
1. История открытия лазеров
1.1 Открытие лазеров
1.2 Свойства лазеров
. Лазеры, используемые в медицине
.1 Лазеры, применяемые в медицине
.2 Лазеры, используемые для коррекции зрения
.3 Методы коррекции зрения
. Органы зрения
.1 Строение глаза и его функции
.2 Заболевания органов зрения и методы их диагностики
.3 Современные методы коррекции зрения с помощью лазеров
Заключение
Список использованных источников


Введение

Первой отраслью медицины, в которой нашли применение лазеры, была офтальмология. Слово "LASER" является аббревиатурой от английского "Light Amplification by Stimulated Emission of Radiation". Активная среда (кристаллы, газы, растворы, полупроводники) чаще всего определяет тип лазера (например, рубиновый, аргоновый, диодный и др.).
Офтальмология - область медицины, изучающая глаз, его анатомию, физиологию и болезни, а также разрабатывающая методы лечения и профилактики глазных болезней.
Лазерное излучение характеризуется когерентностью и монохроматичностью. Поскольку лучи лазера почти параллельны, то с расстоянием световой пучок лишь незначительно увеличивается в диаметре. Монохроматичность и параллельность света лазера позволяет с его помощью избирательно и локально воздействовать на различные биологические ткани.
Для большинства заболеваний постоянно требуются все новые методы лечения. Но лазерное лечение является таким методом, который сам ищет болезни, чтобы их вылечить.
Целью данной работы является изучение механизма лечения болезней связанных со зрительным органом с помощью лазеров. При этом существенно важным является изучение следующих механизмов:
изучить механизмы лечения органов зрения с помощью лазеров;
рассмотреть перспективы лечения и диагностики органов зрения с помощью лазеров.

1. История открытия лазеров

.1 Открытие лазеров

Физической основой работы лазера служит квантовомеханическое явление вынужденного (индуцированного) излучения. Излучение лазера может быть непрерывным, с постоянной мощностью, или импульсным, достигающим предельно больших пиковых мощностей. В некоторых схемах рабочий элемент лазера используется в качестве оптического усилителя для излучения от другого источника.
Существует большое количество видов лазеров, использующих в качестве рабочей среды все агрегатные состояния вещества. Некоторые типы лазеров, например лазеры на растворах красителей или полихроматические твердотельные лазеры, могут генерировать целый набор частот (мод оптического резонатора) в широком спектральном диапазоне. Габариты лазеров разнятся от микроскопических для ряда полупроводниковых лазеров до размеров футбольного поля; для некоторых лазеров на неодимовом стекле.
Уникальные свойства излучения лазеров позволили использовать их в различных отраслях науки и техники, а также в быту, начиная с чтения и записи компакт-дисков и заканчивая исследованиями в области управляемого термоядерного синтеза. Слово "лазер" образовано из начальных букв длинной фразы на английском языке, означающей в дословном переводе: "усиление света с помощью вынужденного излучения".
"Ученые давно обращали внимание на явление самопроизвольного испускания света атомами, - пишет в книге "Мир физики" М.М. Колтун, - происходящее благодаря тому, что возбужденный каким-либо способом электрон вновь возвращается с верхних электронных оболочек атома на нижние. Недаром явление химической, биологической и световой люминесценции, вызванное такими переходами, издавна привлекало исследователей своей красотой и необычностью. Но свет люминесценции слишком слаб и рассеян, Луны ему не достичь..."

Рисунок 1 - Схема работы лазера
- активная среда; 2 - энергия накачки лазера; 3 - непрозрачное зеркало; 4 - полупрозрачное зеркало; 5 - лазерный луч.

Каждый атом при люминесценции испускает свой свет в разное время, не согласованное с атомами-соседями. В результате возникает хаотичное вспышечное излучение. У атомов нет своего дирижера!
В 1917 году Альберт Эйнштейн в одной из статей теоретически показал, что согласовать вспышки излучения отдельных атомов между собой позволило бы... внешнее электромагнитное излучение. Оно может заставить электроны разных атомов одновременно взлететь на одинаково высокие возбужденные уровни. Этому же излучению нетрудно сыграть роль и спускового крючка при "световом выстреле": направленное на кристалл, оно может вызвать одновременное возвращение на исходные орбиты сразу нескольких десятков тысяч возбужденных электронов, что будет сопровождаться могучей ослепительно яркой вспышкой света, света практически одной длины волны, или, как говорят физики, монохроматического света.
Работа Эйнштейна была почти забыта физиками: исследования по изучению строения атома занимали тогда всех значительно больше.
В 1939 году молодой советский ученый, ныне профессор и действительный член Академии педагогических наук В.А. Фабрикант вернулся к введенному Эйнштейном в физику понятию вынужденного излучения. Исследования Валентина Александровича Фабриканта заложили прочный фундамент для создания лазера. Еще несколько лет интенсивных исследований в спокойной мирной обстановке, и лазер был бы создан". Но это произошло только в пятидесятые годы благодаря творческой работе советских ученых Прохорова, Басова и американца Чарльза Харда Таунса (1915).
Александр Михайлович Прохоров (1916-2001) родился в Атортоне (Австралия) в семье рабочего революционера, бежавшего в 1911 году в Австралию из сибирской ссылки. После Великой Октябрьской социалистической революции семья Прохорова возвратилась на родину в 1923 году и через некоторое время поселилась в Ленинграде.
В 1934 году здесь Александр окончил среднюю школу с золотой медалью. После школы Прохоров поступил на физический факультет Ленинградского государственного университета (ЛГУ), который оканчивает в 1939 году с отличием. Далее он поступает в аспирантуру Физического института имени П.Н. Лебедева АН СССР. Здесь молодой ученый занялся исследованием процессов распространения радиоволн вдоль земной поверхности. Им был предложен оригинальный способ изучения ионосферы с помощью радиоинтерференционного метода.
год - исследователь Рангасвани Шринивасон обнаружил, что излучение эксимерного лазера способно производить сверхточные разрезы живой ткани, при этом, не повреждая окружающие ткани высокими температурами. Принцип воздействия излучения ультрафиолетового диапазона на органическое соединение заключается в разъединении межмолекулярных связей и, как результат, перевод части ткани из твердого состояния в газообразное (фотоабляция - испарение).
год - начинается сотрудничество с офтальмологами для усовершенствования лазерной системы и применения его для воздействия на роговице глаза.
год - в Берлине была произведена первая лазерная коррекция зрения по методике ФРК (PRK) с использованием эксимерного лазера. Все современные эксимерные лазеры, используемые в офтальмологии, работают в одном диапазоне длин волн, в импульсном режиме (обычно - с частотой 100 Гц и длиной импульса около 10 нс, иногда эти значения могут достигать 200 Гц и 30 нс) и различаются только формой лазерного пучка (сканирующая щель или летающая точка (пятно)) и составом активного тела (инертного газа). Лазерный пучок, в поперечном разрезе представляющий собой щель или пятно, перемещается по определенной траектории, постепенно снимая (испаряя) слои роговицы, исходя из заданных параметров, и придавая ей новую форму. Температура в зоне абляции практически не повышается (не более 5°-6°) вследствие кратковременности воздействия. С каждым импульсом лазер удаляет слой, толщиной 0,25 мкм (приблизительно 1/500 часть толщины человеческого волоса). Такая точность позволяет добиваться идеального результата лазерной коррекции зрения.

.2 Свойства лазеров

Лазерные лучи - это электромагнитные волны, обладающие весьма своеобразными, можно сказать, уникальными свойствами. Здесь мы остановимся вкратце на четырех особенностях лазерного излучения. К ним относится, прежде всего, очень высокая направленность светового луча. Угол его расходимости примерно в 10000 раз меньше, чем луча хорошего прожектора. На поверхности Луны лазерный луч создает пятно диаметром около 10 км.
Благодаря высокой направленности энергия лазерного луча может передаваться на очень большие, в том числе и космические, расстояния. Это создает основу для осуществления связи, передачи по лазерному лучу как телефонных разговоров, так и телевизионных изображений.
При этом мощность передатчика (лазера) может быть в десятки и сотни тысяч раз меньше мощности обычных радиостанций. В будущем лазерный луч будет использоваться и для передачи энергии.
Второе уникальное свойство лазерного луча - его монохроматичность, т. е. необычайно узкий спектральный состав. Спектральная ширина его излучения во много раз меньше, чем у всех других источников света и радиоволн. Приведем простейший пример. Ширина линии люминесценции рубина равна ~3-10и Гц.
В спектроскопии такая линия считается узкой. В то же время в лучших лазерах удается получить полосу излучения, ширина которой всего несколько герц.
Необычайно высокая монохроматичность лазерного излучения широко используется для решения важнейших научных и технических проблем.
Не следует думать, что высокая монохроматичность свойственна всем типам лазеров. В ряде случаев (полупроводниковые лазеры, лазеры на растворах красителей) полоса излучений весьма широка, что также может быть использовано на практике.
Третье важнейшее свойство лазерного луча - его высокая когерентность. Фазы различных электромагнитных волн, выходящих за пределы резонатора, или одинаковы, или взаимосогласованы. Испускание всех других источников света некогерентно. Отметим, однако, что в радиообласти спектра многие источники излучения дают именно когерентное излучение.
Чтобы представить себе, что такое _ когерентность, проведем следующий простой эксперимент. Бросим на поверхность воды два камня. Вокруг каждого из них образуется волна, распространяющаяся во всех направлениях. В точках соприкосновения волн возникает интерференционная картина, сложение волн. В результате в некоторых местах амплитуда колебаний удвоится, в других - станет равной нулю (волны погасят друг друга). В данном случае волны когерентны.
Бросим теперь в воду горсть песка. На поверхности волн образуется рябь, отдельные песчинки падают в воду в случайные моменты времени, интерференции не будет. Волны, вызываемые песчинками, некогерентны.
Можно привести и другой наглядный пример. Если по мосту идет много случайных прохожих, то никаких особых эффектов не наблюдается. Если же по нему проходит группа людей, шагающих в ногу, то мост может начать сильно колебаться и при наличии резонанса даже разрушиться. В первом случае удары ног людей хаотичны, воздействие на мост некогерентно, во втором случае оно согласованно, когерентно.
В одной из первых научно-популярных брошюр, посвященных квантовой электроники, дается очень удачное объяснение понятия когерентности: "В раскаленной нити лампы накаливания, в ярком светящемся шнуре ртутной лампы царит полный хаос. То здесь, то там вспыхивают возбужденные атомы, испускающие длинные цуги световых волн. Эти вспышки отдельных атомов никак не согласованы между собой. Свечение таких источников напоминает гул неорганизованной, чем-то возбужденной толпы. Совсем иная картина в (квантовом) генераторе света. Здесь все похоже на стройный хор - сначала вступают одни хористы, затем другие, и сила звучания могуче нарастает. Хор грандиозен по числу участников, как это бывает на праздниках песни в Прибалтике.
Расстояния между отдельными группами хористов настолько велики, что слова песни долетают с заметным запозданием от одной группы к другой. Дирижера нет, но это не мешает стройности общего звучания, так как хористы сами подхватывают песню в нужные моменты. То же происходит и с атомами генератора света. Цуги волн, испускаемых отдельными атомами, согласованы друг с другом благодаря явлению индуцированного излучения. Каждый возбужденный атом начинает свою "песню" в унисон с дошедшей до него "песней" другого атома. Вот это и есть когерентность".
Когерентность широко используется в голографии, интерферометрии и во многих других отраслях науки и техники. Ранее, до появления лазеров, малоинтенсивные когерентные волны в видимой области спектра создавались только искусственно, путем разделения одной волны на несколько.
Сказанного достаточно, чтобы понять всю специфичность лазерного излучения. Энергия этого излучения обладает несравненно более высоким качеством, чем энергия источников накачки. Лазерная энергия может быть предельно сконцентрирована и передана на значительные расстояния. Лазерный луч является самым емким носителем информации, принципиально новым средством ее передачи и обработки. Лазерный луч можно сфокусировать в очень малом объеме, например в сфере диаметром 0,1 мм.
Различные лазеры обладают разной интенсивностью и длительностью свечения - от очень малых до очень больших. Выбор типа лазеров для его практического использования зависит от поставленной задачи. Есть лазеры непрерывного действия. Однако большинство лазерных систем излучает отдельные световые импульсы или целую серию импульсов.
Длительности импульсов также различны. В режиме свободной генерации длительность генерации близка к длительности свечения ламп накачки 10-4-10-3 с. В так называемых моноимпульсных генераторах длительность свечения ~10-8 с. В последнее время разработаны генераторы пикосекундной длительности (10-12-10-10 с). Для сокращения длительности импульсов излучения внутрь резонатора лазера вставляют обычно различные управляющие устройства.
Широкое распространение получили сейчас гелий-неоновые лазеры непрерывного действия. Они излучают чаще всего красный свет. Мощность лазера 0,002-0,020 Вт, что во много раз меньше мощности лампочки карманного фонаря.
Газовые непрерывные лазеры на смеси СО2+N2+Не, работающие в невидимой инфракрасной области спектра (лямбда ~10 мкм), имеют мощности в миллион раз больше (порядка сотен и тысяч ватт). Чтобы оценить возможности этих лазеров, нужно вспомнить из школьного курса физики, что для плавления 1 см3 металла необходимо ~50 Дж.
Если мощность лазерного луча 500 Вт, то в принципе он может расплавить за 1 с ~ 10 см3 металла. Реальные цифры, достигаемые на опыте, существенно меньше, так как значительная доля световой энергии, падающей на поверхность металла, отражается от нее.
Мощности, полученные в рубиновом лазере или лазере на неодимовом стекле, намного больше. Правда, длительность свечения мала. С помощью этих устройств нетрудно получить энергию 50 Дж за время - 0,0001 с. Это соответствует мощности 500 тыс. Вт. В моноимпульсных и пикосекундных лазерах возможны мощности лазеров в тысячи и миллионы раз выше. Это намного превосходит спектральные яркости всех других источников света, в том числе и Солнца на его поверхности.
Заметим, что понятие мощности говорит о концентрации энергии во времени, о способности системы произвести значительное действие в заданный (обычно короткий) промежуток времени. Огромные мощности некоторых типов лазеров еще раз свидетельствуют о высоком качестве лазерной энергии.
Можно, например, получить в считанные мгновения плотности энергии, превышающие плотности энергии ядерного взрыва. С помощью лазеров такого типа удается получить температуры, равные десяткам миллионов градусов, давления порядку 100 млн. атмосфер. С помощью лазеров получены самые высокие магнитные поля и т. д.

2. Лазеры, используемые в медицине

2.1 Лазеры, применяемые в медицине

С практической точки зрения, особенно для использования в медицине, лазеры классифицируют по типу активного материала, по способу питания, длине волны и мощности генерируемого излучения.
Активной средой может быть газ, жидкость или твердое тело. Формы активной среды также могут быть различными. Чаще всего для газовых лазеров используются стеклянные или металлические цилиндры, заполненные одним или несколькими газами. Примерно так же обстоит дело и с жидкими активными средами, хотя часто встречаются прямоугольные кюветы из стекла или кварца. Жидкостные лазеры - это лазеры, в которых активной средой являются растворы определенных соединений органических красителей в жидком растворителе (воде, этиловом или метиловом спиртах и т.п.).
В газовых лазерах активной средой являются различные газы, их смеси или пары металлов. Эти лазеры разделяются на газоразрядные, газодинамические и химические. В газоразрядных лазерах возбуждение осуществляется электрическим разрядом в газе, в газодинамических - используется быстрое охлаждение при расширении предварительно нагретой газовой смеси, а в химических - активная среда возбуждается за счет энергии, освобождающейся при химических реакциях компонентов среды. Спектральный диапазон газовых лазеров значительно шире, чем у всех остальных типов лазеров. Он перекрывает область от 150 нм до 600 мкм.
Эти лазеры имеют высокую стабильность параметров излучения по сравнению с другими типами лазеров.
Лазеры на твердых телах имеют активную среду в форме цилиндрического или прямоугольного стержня. Таким стержнем чаще всего является специальный синтетический кристалл, например рубин, александрит, гранат или стекло с примесями соответствующего элемента, например эрбия, гольмия, неодима. Первый действующий лазер работал на кристалле рубина.
Разновидностью активного материала в виде твердого тела являются также полупроводники. В последнее время благодаря своей малогабаритности и экономичности полупроводниковая промышленность очень бурно развивается. Поэтому полупроводниковые лазеры выделяют в отдельную группу.
Итак, соответственно типу активного материала выделяют следующие типы лазеров:
газовые;
жидкостные;
на твердом теле (твердотельные);
полупроводниковые.
Тип активного материала определяет длину волны генерируемого излучения. Различные химические элементы в разных матрицах позволяют выделить сегодня более 6000 разновидностей лазеров. Они генерируют излучение от области так называемого вакуумного ультрафиолета (157 нм), включая видимую область (385-760 нм), до дальнего инфракрасного (> 300 мкм) диапазона. Все чаще понятие "лазер", вначале данное для видимой области спектра, переносится также на другие области спектра.

Таблица 1 - лазеры применяемые в медицине.
Тип лазера Агрегатное состояние активного вещества Длина волны, нм Диапазон излучения
со, Газ 10600 Инфракрасный
YAG:Er YSGG:Er YAG:Ho YAG:Nd Твердое тело 2940 2790 2140 1064/1320 Инфракрасный
Полупроводниковый, например арсенид галлия Твердое тело (полупроводник) 635-1500 904 От видимого до инфракрасного
Рубиновый Твердое тело 694 Видимый
Гелий-неоновый (He-Ne) Газ 540 632,8 1150 Зеленый, ярко-красный, инфракрасный
На красителях Жидкость 350-950 (перестраиваемая) Ультрафиолет - инфракрасный
На парах золота Газ 628,3 Красный
На парах меди Газ 511/578 Зеленый/желтый
Аргоновый Газ 488 515 Голубой, зеленый
Эксимерный: ArF KrF XeCI XeF Газ 193 249 308 351 Ультрафиолет

Например, для более коротковолнового излучения, чем инфракрасное, используется понятие "рентгеновские лазеры", а для более длинноволнового, чем ультрафиолетовое, - понятие "лазеры, генерирующие миллиметровые волны"
В газовых лазерах используется газ или смесь газов в трубе. В большинстве газовых лазеров используется смесь гелия и неона (HeNe), с первичным выходным сигналом в 632,8 нм (нм = 10~9 м) видимого красного цвета. Впервые такой лазер был разработан в 1961 году и стал предвестником целого семейства газовых лазеров. Все газовые лазеры довольно похожи по конструкции и свойствам.
Например, С02-газовый лазер излучает длину волны 10,6 мкм в дальней инфракрасной области спектра. Аргоновый и криптоновый газовые лазеры работают с кратной частотой, излучая преимущественно в видимой части спектра. Основные длины волн излучения аргонового лазера - 488 и 514 нм.
Твердотельные лазеры используют лазерное вещество, распределенное в твердой матрице. Одним из примеров является неодим (Кё)-лазер. Термин АИГ является сокращением для кристалла - алюмоиттриевый гранат, который служит как носитель для ионов неодима. Этот лазер излучает инфракрасный луч с длиной волны 1,064 мкм. Вспомогательные устройства, которые могут быть как внутренними, так и внешними по отношению к резонатору, могут использоваться для преобразования выходного луча в видимый или ультрафиолетовый диапазон. В качестве лазерных сред могут использоваться различные кристаллы с разными концентрациями ионов-активаторов: эрбия (Ег3+), гольмия (Но3+), тулия (Тт3+).
Выберем из этой классификации лазеры, наиболее пригодные и безопасные для медицинского использования. К более известным газовым лазерам, используемым в стоматологии, относятся С02-лазеры, He-Ne-лазеры (гелий-неоновые лазеры). Представляют интерес также газовые эксимерные и аргоновые лазеры. Из твердотельных лазеров наиболее популярным в медицине является лазер на YAG:Er, имеющий в кристалле эрбиевые активные центры. Все чаще обращаются к лазеру на YAG:Ho (с гольмиевыми центрами). Для диагностического и терапевтического применения используется большая группа как газовых, так и полупроводниковых лазеров. В настоящее время в производстве лазеров в качестве активной среды используется свыше 200 видов полупроводниковых материалов.

Таблица 2 - характеристики разнообразных лазеров.
Фирма, модель/Страна Средняя мощность, Вт Радиус операционного поля, м Минимальный размер пятна ткани, мкм Потребляемая мощность, Вт
Coherent. США/ Ultrapulse 5000с 0,05-100 1,8 300 3500
Sharplan. Израиль/40С 1-40 1,2 160 960
DEKA. Итапия/Smartoffice 1-20 1,2 300 1000
Mattioli. Итэлия/Eagle 20 1-20 1,3 200 750
Lasering. Италия/Slim 0,2-20 1,3 200 600
КБП. Россия/Ланцет-2 0,1-20 1,2 200 600
NIIC. Япония/NIIC 15 1-15 0,4 100 480

Лазеры можно классифицировать по виду питания и режиму работы. Здесь выделяются устройства непрерывного или импульсного действия. Лазер непрерывного действия генерирует излучение, выходная мощность которого измеряется в ваттах или милливаттах.
При этом степень энергетического воздействия на биоткань характеризуется:
Плотностью мощности - отношение мощности излучения к площади сечения лазерного пучка р = P/s].
Единицы измерения в лазерной медицине - [Вт/см2], [мВт/см2];
Дозой излучения П, равной отношению произведения мощности излучения [Р и времени облучения к площади сечения лазерного пучка. Выражается в [Вт • с/см2];
Энергией [Е= Рt] - произведение мощности на время. Единицы измерения - [Дж], т.е. [Вт с].
С точки зрения мощности излучения (непрерывной или средней) медицинские лазеры делятся на:
лазеры малой мощности: от 1 до 5 мВт;
лазеры средней мощности: от 6 до 500 мВт;
лазеры большой мощности (высокоинтенсивные): более 500 мВт. Лазеры малой и средней мощности причисляют к группе так называемых биостимулирующих лазеров (низкоинтенсивных). Биостимулирующие лазеры находят все более широкое терапевтическое и диагностическое использование в экспериментальной и клинической медицине.
С точки зрения режима работы лазеры делятся на:
режим излучения непрерывный (волновые газовые лазеры);
режим излучения смешанный (твердотельные и полупроводниковые лазеры);
режим с модуляцией добротности (возможен для всех типов лазеров).
Похожие материалы:

Добавление комментария

Ваше Имя:
Ваш E-Mail:

Код:
Включите эту картинку для отображения кода безопасности
обновить, если не виден код
Введите код: