Реферат: Свойства газов и газовых смесей применяемых для водолазных спусков

Med-books.by - Библиотека медицинской литературы. Книги, справочники, лекции, аудиокниги по медицине. Банк рефератов. Готовые медицинские рефераты. Всё для студента-медика.
Скачать бесплатно без регистрации или купить электронные и печатные бумажные медицинские книги (DJVU, PDF, DOC, CHM, FB2, TXT), истории болезней, рефераты, монографии, лекции, презентации по медицине.


=> Книги / Медицинская литература: Акупунктура | Акушерство | Аллергология и иммунология | Анатомия человека | Английский язык | Анестезиология и реаниматология | Антропология | БиоХимия | Валеология | Ветеринария | Внутренние болезни (Терапия) | Военная медицина | Гастроэнтерология | Гематология | Генетика | География | Геронтология и гериатрия | Гигиена | Гинекология | Гистология, Цитология, Эмбриология | Гомеопатия | ДерматоВенерология | Диагностика / Методы исследования | Диетология | Инфекционные болезни | История медицины | Йога | Кардиология | Книги о здоровье | Косметология | Латинский язык | Логопедия | Массаж | Математика | Медицина Экстремальных Ситуаций | Медицинская биология | Медицинская информатика | Медицинская статистика | Медицинская этика | Медицинские приборы и аппараты | Медицинское материаловедение | Микробиология | Наркология | Неврология и нейрохирургия | Нефрология | Нормальная физиология | Общий уход | О достижении успеха в жизни | ОЗЗ | Онкология | Оториноларингология | Офтальмология | Паллиативная медицина | Паразитология | Патологическая анатомия | Патологическая физиология | Педиатрия | Поликлиническая терапия | Пропедевтика внутренних болезней | Профессиональные болезни | Психиатрия-Психология | Пульмонология | Ревматология | Сестринское дело | Социальная медицина | Спортивная медицина | Стоматология | Судебная медицина | Тибетская медицина | Топографическая анатомия и оперативная хирургия | Травматология и ортопедия | Ультразвуковая диагностика (УЗИ) | Урология | Фармакология | Физика | Физиотерапия | Физическая культура | Философия | Фтизиатрия | Химия | Хирургия | Экологическая медицина | Экономическая теория | Эндокринология | Эпидемиология | Ядерная медицина

=> Истории болезней: Акушерство | Аллергология и иммунология | Ангиология | Внутренние болезни (Терапия) | Гастроэнтерология | Гематология | Гинекология | ДерматоВенерология | Инфекционные болезни | Кардиология | Наркология | Неврология | Нефрология | Онкология | Оториноларингология | Офтальмология | Педиатрия | Профессиональные болезни | Психиатрия | Пульмонология | Ревматология | Стоматология | Судебная медицина | Травматология и ортопедия | Урология | Фтизиатрия | Хирургия | Эндокринология

=> Рефераты / Лекции: Акушерство | Аллергология и иммунология | Анатомия человека | Анестезиология и реаниматология | Биология | Биохимия | Валеология | Ветеринария | Внутренние болезни (Терапия) | Гастроэнтерология | Гематология | Генетика | Гигиена | Гинекология | Гистология, Цитология, Эмбриология | Диагностика | ДерматоВенерология | Инфекционные болезни | История медицины | Лечебная физкультура / Физическая культура | Кардиология | Массаж | Медицинская реабилитация | Микробиология | Наркология | Неврология | Нефрология | Нормальная физиология | Общий уход / Сестринское дело | Озз | Онкология | Оториноларингология | Офтальмология | Патологическая анатомия | Педиатрия | ПатоФизиология | Профессиональные болезни | Психиатрия-Психология | Пульмонология | Ревматология | Скорая и неотложная медицинская помощь | Стоматология | Судебная медицина | Токсикология | Травматология и ортопедия | Урология | Фармакогнозия | Фармакология | Фармация | Физиотерапия | Фтизиатрия | Химия | Хирургия | Эндокринология | Эпидемиология | Этика и деонтология

=> Другие разделы: Авторы | Видео | Клинические протоколы / Нормативная документация РБ | Красота и здоровье | Медицинские журналы | Медицинские статьи | Наука и техника | Новости сайта | Практические навыки | Презентации | Шпаргалки


Med-books.by - Библиотека медицинской литературы » Рефераты: Нормальная физиология » Реферат: Свойства газов и газовых смесей применяемых для водолазных спусков

Реферат: Свойства газов и газовых смесей применяемых для водолазных спусков

0

Скачать бесплатно реферат:
«Свойства газов и газовых смесей применяемых для водолазных спусков»


Основные свойства газов

Для нормального существования человека необходимы вода, пища, определенные температурные условия и, конечно, воздух при давлении близком к атмосферному.
Пребывание человека в водной среде, которая по своим физическим свойствам существенно отличается от воздушной, невозможно без снаряжения, защищающего его тело от воздействия водной среды и обеспечивающего выполнение основных жизненных функций. Следовательно, подводному пловцу необходимо знать физические свойства как воды, так и воздуха, а также особенности их влияния на организм человека при повышенном давлении.
Знание законов газовой динамики и гидродинамики, представление о физиологии человека при пребывании в несвойственных ему условиях позволяют правильно решить многие вопросы, связанные с безопасной эксплуатацией подводного снаряжения, понять устройство и принцип действия акваланга, избежать травматизма и несчастных случаев под водой.

Физико-химические и физиолого-гигиенические характеристики газов и дыхательных газовых смесей, применяемых для водолазных спусков на глубины до 60 м

Для спусков водолазов на малые и средние глубины используются кислород, 40%-ная кислородно-азотная смесь (40% КАС) и воздух. Кислород применяется в снаряжении с замкнутой схемой дыхания для проведения спусков на глубины до 20 м и в барокамере под давлением до 2 кг/см2 (20 м вод.ст.). 40% КАС используется для спусков на глубины до 40 м в снаряжении с полузамкнутой или открытой схемой дыхания, а также в некоторых образцах снаряжения с замкнутой схемой дыхания. Воздух применяется для спусков в вентилируемом снаряжении и в снаряжении с открытой схемой дыхания (рабочие спуски на глубины до 60 м и спуски в аварийных ситуациях на глубины до 80 м), а также для спусков в барокамере (тренировочные спуски и лечебная рекомпрессия) под давлением до 10 кгс/см2.

Физико-химические и физиолого-гигиенические характеристики воздуха

Историческая справка.
Древнегреческий философ Анаксимен (VI век до н.э.) считал среди всех четырех «первоэлементов» (воды, огня, воздуха и земли) первоначалом воздух, который бесконечен, вечен и подвижен: сгущаясь, он образует облака, затем воду и, наконец, твердые тела.
Величайший ученый древности Аристотель (384-322 гг. до н.э.) высказал предположение, что воздух обладает массой, но не смог это доказать. Он ввел понятие «атмосфера» (по-гречески «атмос» - пар или дыхание, «сфера» - шар). В русский язык этот термин ввел М.В.Ломоносов.
Первые указания на то, что не весь воздух, а лишь его «активная» часть поддерживает горение, имеются в китайских рукописях VIII века.
В 1260 г. английский философ и естествоиспытатель Роджер Бэкон указал, что горение тел в закрытых сосудах прекращается из-за отсутствия воздуха.
Леонардо да Винчи (1452-1519) рассматривал воздух как смесь двух газов, лишь один из которых расходуется при горении и дыхании.
В 1560 г. Джиовани Баптиста ставил в Неаполе опыты, опровергавшие представления о невесомости атмосферы, однако, опасаясь инквизиции, он отказался от своих «еретических воззрений».
Галилео Галилей (1564-1642) взвесил воздух, доказав, что он обладает массой. Галилей установил, что сосуд со сжатым воздухом весит больше, чем с воздухом при обычном давлении. Он впервые высказал мысль о том, что воздух оказывает давление на поверхность Земли, применил закон Архимеда к воздуху, хотя ошибся в расчете плотности воздуха.
В 1620 г. голландский естествоиспытатель Ян Батист ван Гельмонт, изучая продукты горения, обнаружил пары, напоминающие воздух, но тем не менее отличающиеся от него. Он назвал их «хаосом», что, согласно фламандскому фонетическому строю, произносится как «газ». Этот термин объединяет в настоящее время все вещества, находящиеся в воздухообразном, т.е. газообразном, состоянии материи. До Яна Гельмонта единственным известным воздухообразным веществом был сам воздух.
В 1643 г. итальянский физик и математик Эванджелиста Торричелли показал, что воздух поддерживает столбик ртути высотой 28 дюймов (760 мм рт.ст.), причем высота столбика ртути не зависит от формы и размеров трубки, а, следовательно, определяется не весом ртутного столбика, а давлением у его основания. Так был изобретен барометр, открыто существование атмосферного давления и вакуума. Выяснилось, что газы имеют массу, но их плотность меньше, чем у жидких и твердых веществ. Торричелли заметил, что мы живем на дне воздушного океана.
В 1654 г. немецкий физик Отто фон Герике впервые публично в присутствии императора Фердинанда III продемонстрировал в Магдебурге существование атмосферного давления. Из медного шара, состоящего из двух полых полушарий, был выкачан воздух. С обеих сторон полушарий было впряжено по 8 лошадей. С первой попытки они с трудом разделили полушария, а после более тщательной откачки воздуха разъединить полушария уже не удалось.
В 1660-1662 гг. выдающийся английский ученый Роберт Бойль обратил внимание на то, что, чем сильнее сжимают воздух в закрытом сосуде, тем сильнее он сопротивляется сжатию. Это явление Бойль назвал «пружинистостью воздуха» и сформулировал первый газовый закон (зависимости объема и давления газа), который через 16 лет был заново открыт французом Эдмом Мариоттом. Бойль также создал первую барокамеру и объяснил принцип ее действия. Он установил, что в разреженной атмосфере процессы дыхания и горения значительно слабее.
В 1703 г. немецкий химик и врач Г.Э.Шталь предложил «флогистонную теорию», объяснявшую процесс горения выделением из тел особого, невидимого и невесомого вещества - флогистона («начала горючести»), а в 1723 г. детально развил представление об этом веществе.
В 1748 г. М.ВЛомоносов написал труд «Опыт теории упругости воздуха», в котором он объяснил упругость газов движением их частиц.
В 1754 г. шотландский химик и физик Джозеф Блэк впервые показал, что воздух не является простым веществом или элементом, как считал Р.Бойль, а состоит из собственно воздуха и углекислого газа.
В 1756 г. М.В.Ломоносов произвел опыты по обжиганию металла в закрытом сосуде, в результате которых опытным путем доказал сохранение вещества при химических реакциях и отметил роль воздуха в процессе горения. Наблюдаемое при обжигании увеличение массы металлов он объяснил соединением их воздухом. М.В.Ломоносов отказался от теории «флогистона», исключив его из числа химических агентов.
В конце XVIII века исследование газов приобрело широкий размах и даже составило новое направление, названное «пневматической химией». В 1771 г. шведский химик и аптекарь Карл Вильгельм Шееле путем прокаливания селитры и других веществ получил «огненный воздух» (кислород), в котором все предметы горели ярче. В 1774 г. независимо от него английский химик и философ Джозеф Пристли, нагревая оксид ртути, вновь открыл кислород, названный им «дефлогистированным воздухом». Пристли отметил, что этот газ активно поддерживает горение, дает приятные ощущения при дыхании им («чувствовал себя легко и свободно»), но обнаружил, что животные, помещенные в среду данного газа, заболевают и гибнут.
В 1772 г. шотландский химик Даниэль Резерфорд сжигал на воздухе под стеклянным колпаком «углистые вещества», а образующуюся СО2 связывал раствором едкой щелочи. Он нашел, что остающийся газ не поддерживает горения и дыхания. По поручению Д. Блэка Резерфорд поставил следующий опыт: в замкнутом объеме мышь дышала до смерти, затем там была зажжена свеча, которая горела до тех пор, пока не погасла. В оставшемся воздухе горел фосфор. После адсорбции углекислого газа остаток не поддерживал горения. Этот газ был назван им «мефитическим (удушливым) воздухом». В 1772-1773 гг. Карл В.Шееле вновь выделил этот газ, названный им «флогистированным воздухом», а в 1787 г. А.Лавуазье дал название «азот» - безжизненный.
В 1775-1778 гг. французский физик и химик Антуан Лоран Лавуазье назвал «дефлогистированный воздух» кислородом, определил, что он составляет 1/5 часть воздуха, установил жизненную необходимость кислорода для органического мира на Земле и факт выделения в процессе жизнедеятельности человека и животных углекислого газа, выяснил роль кислорода в процессах горения, обжигания металлов и дыхания. Он определил, что процесс дыхания сводится к окислению органических соединений кислородом. Лавуазье впервые установил, что при соприкосновении выделенного газа с темной венозной кровью она превращается в светлую артериальную. Он обнаружил, что зеленые растения «исправляют» воздух, испорченный дыханием. В дальнейшем Лавуазье и Клод Бернар установили, что в период пребывания животных в герметичных камерах содержание кислорода снижается, а углекислого газа возрастает.
В 1781 г. английский физик и химик Генри Кавендиш определил состав воздуха, а в 1784 г. выпустил книгу «Опыты с воздухом».
В 1801-1803 гг. английский физик и химик Джон Дальтон открыл законы парциальных давлений газов и растворимости газов в жидкостях.
В 1802 г. выдающий французский ученый Жозеф Луи Гей-Люссак опубликовал второй газовый закон, но настоял на том, чтобы закону было присвоено имя его соотечественника Жака Шарля, который получил аналогичные результаты еще в 1787 г., но не опубликовал их.
В 1803г. английский ученый Уильям Генри установил зависимость количества газа, поглощенного жидкостью, от его давления, а в 1808 г. открыл зависимость растворимости газов в воде от температуры (закон Генри).
В 1823 г. издан труд российского гигиениста И.С.Веселовского «О загрязнениях атмосферного воздуха, вредоносно действующих на живой человеческий организм».
В 1877 г. французский физик Л.П.Кайэте и швейцарский химик Амс Пикте впервые получили жидкий воздух.
В 1907 г. английский ученый Г.М.Верной определил коэффициент растворения азота в жирах и воде.
В 1948 г. Н.В.Лазаревым введен термин «индифферентные газы» для обозначения элементов 8-й группы инертных газов (Не - Хе), а также азота и водорода. В 1986 г. термин был уточнен И.А. Саповым, который назвал их «метаболически индифферентными газами».

Основные физико-химические свойства воздуха

Атмосферный воздух представляет собой смесь азота, кислорода, углекислого газа, аргона и других газов. Кроме того, в воздухе всегда содержится некоторое количество водяных паров.
Молекулярная масса сухого воздуха составляет 28,96, плотность - 1,2928 г/л, растворимость в воде - 29,18 см3 при +20°С, температура кипения - 193°С.
Воздух имеет физические свойства, характерные для других газов. Газ состоит из молекул, имеющих ничтожные размеры по сравнению с объемом, занимаемым газом, поэтому расстояние между молекулами значительно превышает собственные размеры молекул. Силы притяжения между молекулами крайне малы, в связи с чем при различных расчетах используются законы (Бойля - Мариотта, Гей-Люссака и др.) и формулы для «идеальных газов», молекулы которых не обладают силами взаимного притяжения и при столкновении проявляют только силы упругого удара. Воздух и такие газы, как азот, кислород и гелий, приближаются к поведению идеальных газов, особенно при малых давлениях и высоких температурах. Молекулы газов находятся в непрерывном беспорядочном поступательном движении. Газы не имеют своего объема и формы, а принимают форму и занимают объем сосуда, в который их помещают. Они равномерно заполняют объем занимаемого сосуда, стремясь расшириться и занять возможно больший объем. Газы обладают малым удельным весом. Они имеют большую сжимаемость, поскольку при сжатии газа уменьшается лишь расстояние между молекулами, а сами молекулы при этом не сдавливают друг друга, что характерно для жидкостей. Давление газа (его упругость) является следствием совокупности ударов частиц газа о стенку сосуда. Среднее давление на единицу площади сосуда во времени практически не изменяется, поскольку, несмотря на хаотичность ударов молекул о стенки сосудов, число ударов исключительно велико, а сила единичных ударов очень мала. При сжатии газы нагреваются, а при расширении охлаждаются. Охлаждение газов происходит потому, что на их расширение затрачивается работа, а при отсутствии подвода тепла извне необходимая работа совершается за счет энергии движущихся частиц газа, в результате чего скорость их движения замедляется и температура снижается.

Наименование газа Содержание газов Содержание газов в сухом чистом воздухе. При расчетах состава воздуха и искусственных газовых смесей обычно учитываются объемные проценты.
в объемных процентах в массовых процентах
Азот Кислород Углекислый газ Аргон Другие газы 78,084 20,946 0,033 0,934 0,033 75,51 23,15 0,046 1,28 0,014

К другим газам относятся неон (содержание 18,0 мл в 1м3 воздуха = 0,0018 %), гелий (5,2 мл), метан (2,2 мл), криптон (1,0 мл), закись азота (1,0 мл), водород (0,5 мл), ксенон(0,08 мл) и озон (0,01 мл).
Кроме того, в атмосфере находятся водяные пары, содержание которых в процентах от объема атмосферы у земной поверхности составляет от 0,00002% в Антарктиде до 3% в тропиках. В средних широтах количество водяных паров колеблется от 0,1 до 2,8 % в зависимости от сезона, климата и погоды. Воздух над океанами обычно близок к насыщению паром (относительная влажность 80 % и выше), поэтому достаточно небольшой разницы температур, чтобы пар начал оседать на металлических поверхностях, в жилых и служебных помещениях на судне.
Все большее значение в последнее время придается загрязнениям атмосферного воз духа, которые бывают двух видов: естественные (из космоса и при извержениях вулканов) и антропогенные. Загрязнения подразделяются на пылевое, газовое, химическое, ароматическое и тепловое. В городах 70-80 % загрязнений приходится на транспорт. Из загрязнений от промышленных предприятий 34% падает на металлургическую промышленность, 27% - на ТЭЦ, 12% - на нефтяную промышленность, 9% - на химическую и 7% - на газовую. В последние годы на первое место по загрязнениям выдвигается сельское хозяйство. В воздухе жилой среды обнаруживается около 100 веществ, относящихся к разным классам химических соединений: предельные, непредельные и ароматические углеводороды, спирты, фенолы, простые и сложные эфиры, альдегиды, кетоны, гетероциклические соединения, аминосоединения и др.
Азот - химический элемент V группы периодической системы Менделеева, атомный номер 7, атомная масса 14,0067. Азот широко распространен в природе. В космосе он занимает 4-е место после водорода, гелия и кислорода. Живые организмы содержат около 0,3 % азота в соединениях. Азот состоит из двухатомных молекул (N2) c молекулярной массой 28,016. Представляет собой бесцветный газ без запаха и вкуса. Плотность равна 1,2506 г/л, плотность по отношению к воздуху 0,9673. Температура плавления -210,02 °С, температура кипения - -195,81 °С. Коэффициент растворимости атмосферного азота (вместе с аргоном и другими инертными газами) в воде при 20 °С составляет 0,016665, а при 38°С он равен 0,0139. Растворимость азота в крови при 38 °С составляет 0,01253. Азот растворяется в воде вдвое хуже кислорода (при 20 °С в 1 л воды растворяется 15,4 мл азота и 31 мл кислорода), что определяет отношение кислорода к азоту в воде 1 : 2, а не 1 : 4, как в воздухе.
По химическим свойствам азот весьма индифферентен (является в обычных условиях метаболически индифферентным газом). По прочности молекула азота почти не имеет равных. Чтобы разорвать ее на отдельные атомы, нужно затратить очень большую энергию. Для вступления в реакцию требуется воздействие высоких температур, облучения, катализаторов и др., вследствие чего молекула азота разрывается на атомы и может соединяться с кислородом (образует окислы азота), с водородом (получается аммиак), с некоторыми металлами и металлоидами, особенно в присутствии катализаторов. Азот является одним из биогенных элементов, входит в состав белков и нуклеиновых кислот.
Кислород - химический элемент IV группы, атомный номер 8, атомная масса 15,9994. Самый распространенный на Земле элемент (49 % массы всех элементов в природе), который в виде соединений входит в массу земной коры, состав воды (88,81 % по массе) и многих тканей живых организмов (около 70 % по массе). Повсеместно распространен в природе. В свободном виде встречается в двух модификациях: О2 («обычный» кислород) и 03 (озон). 02 - бесцветный газ без запаха и вкуса с молекулярной массой 32,000. Плотность равна 1,42895 г/л, плотность по отношению к воздуху 1,033. Температура кипения составляет -182,97 °С. Коэффициент растворимости в воде при 20 °С равен 0,03329, а в плазме крови при 37 °С - 0,022. Химически самый активный (после фтора) неметалл. В условиях обычной или высокой температуры кислород поддерживает горение горючих веществ, непосредственно взаимодействует при окислении, горении, тлении и т.д. с большинством элементов (почти со всеми веществами, кроме инертных газов, хлора, брома, йода, некоторых благородных металлов), как правило, с выделением энергии. При повышении температуры скорость окисления возрастает и может начаться горение. Животные и растения получают необходимую для жизни энергию за счет биологического окисления различных веществ кислородом, поступающим в организм при дыхании. Свободный кислород атмосферы сохраняется благодаря фотосинтезу растений.
Для дыхания водолазов под водой используется сжатый воздух, содержащийся в баллонах дыхательного аппарата или подаваемый от компрессора или водолазной помпы. Сжатый воздух оказывает на организм водолаза механическое и биологическое действие.

Атмосферное давление и единицы измерения давления

Механическое давление измеряется силой, действующей перпендикулярно на единицу поверхности тела:
= F:S,

где Р - давление, кгс/см2 , F - сила, кгс; S - площадь, см2 .
Согласно закону Паскаля внешнее давление на жидкость или газ передается во все стороны равномерно. Столб жидкости или газа создает давление, обусловленное весом этого столба.
В системе СИ за единицу величины давления принят паскаль (Па), представляющий собой давление, создаваемое силой 1 ньютон (1 Н) на площадь 1 м 2 (1Н - это такая сила, которая придает телу массой 1 кг ускорение 1 м/с2 в направлении действия силы). Поскольку паскаль является малой величиной, для измерения давления чаще пользуются кратными единицами - килопаскаль (кПа = 103 Па) и мегапаскаль(Мпа = 106 Па).
В водолазной практике пока обычно используются единица силы «кгс» и единица давления «кгс/см2», кратные метрам водяного столба (м вод.ст}, что удобно для пользования режимами декомпрессии, предназначенными для применения как в водной среде (величина давления выражается глубиной нахождения в метрах), так и в газовой среде барокамеры (давление измеряется по манометрам, имеющим шкалу в кгс/см2 или в м вод.ст.).
В отдельных случаях (в основном для оценки физиологических характеристик систем дыхания и кровообращения в нормобарических и гипербарических условиях) применяется внесистемная единица «миллиметры ртутного столба» (мм рт.ст., торр). За рубежом нередко применяют единицу «бар», равную1 . 105 Па = 0,1 МПа ≈ 1 кгс/см2. В англоязычных странах используется также внесистемная единица фунт на квадратный дюйм (Psi) = 6895 Па. В практике водолазного дела обычно применяются приближенные расчеты и условно принимается, что кгс/см2 кратна паскалю:
кгс = 9,80665 Н ≈ 10 Н;
кгс/см2 = 9,80665 . 104 Па ≈ 100кПа ≈ 0,1 МПа;
Па = 1,019716 . 10-5 кгс/см2 : ≈ 1,02 . 10-4 м вод.ст.;
мм рт.ст. (торр) = 133,322 Па ≈ 0,13 кПа.
Масса воздуха, составляющая атмосферу Земли, оказывает давление, называемое атмосферным. На широте 45° на уровне моря имеется нормальное барометрическое давление воздуха, что составляет 1 физическую атмосферу (атм), которая равна 760 мм рт. ст., 1,033 кгс/см2 или 10,33 м вод. ст.
В технике и в водолазной практике за единицу давления принимается техническая атмосфера (ат), под которой понимается давление, оказываемое силой 1 кгс на 1 см2 поверхности. Одна техническая атмосфера равна давлению 10,0 м вод.ст. = 735,6 мм рт.ст.

Соотношение между различными единицами давления
Единицы Па Кгс/см2, ат атм мм рт.ст. м вод.ст.
паскаль (Па) 1 1,02 . 10-5 0,99 . 10-5 750,1 . 10-5 1,02 . 10-4
атм. технич. (кгс/см2, ат) 0,98 105 1 0,97 735,6 10,0
атмосф. физич. (атм) 1,01 . 105 1,03 1 760,0 10,3
торр (мм.рт.ст) 1,33 . 102 1,36 . 10-3 1,32 . 10-3 1 1,36 . 10-2
м. вод. ст. 0,98 . 104 0,1 0,097 73,56 1

С переходом на систему СИ участилось, в том числе в медицинской и водолазной практике, употребление множителей и приставок для десятичных кратных и дольных (положительных и отрицательных) единиц и их наименований:
газ смесь водолазный спуск
Множитель, на который умножается единица Приставка Обозначение
Русское Международное
1015 пета П P
1012 тера Т Т
109 гига Г G
106 мега М M
103 кило к k
102 (гекто) г h
101 (дека) да da
10-1 (деци) д d
10-2 (санти) с c
10-3 милли м m
10-6 микро мк m
10-9 нано н n
10-12 пико п p
10-15 фемто ф f
Примечание. В скобках указаны приставки, которые допускаются к применению только в наименованиях кратных и дольных единиц, уже получивших широкое распространение (например, декалитр, дециметр, сантиметр и др.)

Абсолютное давление

Тело водолаза, находящегося в воде, испытывает не только атмосферное давление от столба воздуха, но также избыточное давление массы столба воды. Суммарное давление (атмосферное + избыточное) называется абсолютным давлением. Оно определяется по формуле:

,

где Рабс - абсолютное давление, кгс/см2; Б - барометрическое давление (давление воздуха на уровне моря), мм рт.ст.; 735,6 - атмосферное давление,соответствующее давлению 10 м вод.ст., выраженное в мм рт.ст.; γ - удельный вес (плотность) жидкости, кгс/см3 (кгс/л, в пресной воде γ = 1 кгс/л); Н - глубина воды, м.
Абсолютное давление используется для расчетов парциального давления газов, оценки биологического действия газовых смесей, газовой и водной сред, расчетов запасов газов и газовых смесей, вентиляции барокамер и др. Режимы декомпрессии и лечебной рекомпрессии выбираются не по абсолютному, а по избыточному давлению.
Для упрощения расчетов атмосферное давление считают постоянным и принимают равным 1 кгс/см2. Абсолютное давление в данном случае выражается формулой:

Рабс = 1 + 0,1Н,

где Н - глубина воды, м.
При спусках в высокогорных условиях учитывается величина барометрического давления (Б), а при спусках в жидкости с высокой плотностью глубина спуска определяется с учетом удельного веса жидкости (γ).
Избыточное давление может создаваться действием не только столба воды, но и повышенного давления воздуха или иной газовой среды в барокамере. В этом случае при давлении в барокамере по манометру 2 кгс/см2, что является избыточным давлением, абсолютное давление составит 3 кгс/см2.

Парциальное давление

Газы, входящие в состав воздуха или другой газовой смеси, производят давление независимо друг от друга:

Р = р1 + р2 + ... + рn ,

где р1, р2 , …, рn - давление каждого газа в отдельности.
Такое давление отдельного газа называется парциальным давлением. Парциальное давление газа определяется из выражения Дальтона:

,

где рг - парциальное давление газа в смеси, кгс/см2, Рсм - абсолютное давление газовой смеси, кгс/см2; С - абсолютное давление газовой смеси, %.
В водолазной практике удельное давление водяных паров, как правило, не учитывается.
Следует, однако, отметить, что из-за перемешивания поступающего и выдыхаемого воздуха в газовом объеме скафандра содержание углекислого газа будет несколько выше, а кислорода - несколько ниже расчетных величин, конкретные величины которых зависят от вентиляции скафандра.
Общее давление газовой смеси всегда равно сумме парциальных давлений всех газов, входящих в газовую смесь.
Формула справедлива для любых единиц измерения давления. Исходя из этой формулы, можно рассчитать также объемное или массовое содержание газов, приведенное к условиям нормального давления, т.е. характеризующее физиологическое действие газа при повышенном давлении, соответствующее его действию при нормальном давлении. В этом случае приведенное значение содержания газа (в %, мг/м3 или в других единицах):

Спр = С . Рсм ,

где Спр - процентное или массовое содержание газа в смеси, приведенное к условиям нормального давления (%, мг/л, мг/м3 или др.), С - содержание газа в смеси (%, мг/л, мг/м3 или др.), Рсм - абсолютное давление газовой смеси (кгс/см2).
Данные расчеты имеют большое значение, поскольку биологическое действие газов в условиях повышенного давления определяется именно их парциальным давлением или приведенным к условиям нормального давления содержанием в гипербарической газовой среде.

Плотность газов

Газы в отличие от жидкостей характеризуются малой плотностью. Нормальной плотностью газа называется масса одного его литра при 0°С и давлении 1 кгс/см2. Масса одной молекулы любого газа пропорциональна его плотности.
Плотность газа ρ изменяется пропорционально давлению и измеряется отношением массы газа m к занимаемому им объему V:

Для практических целей различные газы удобно характеризовать по их плотности относительно воздуха при одинаковых условиях давления и температуры. Поскольку молекулы разных газов имеют различную массу, их плотности при одинаковом давлении пропорциональны молярным массам.

Плотность газов и отношение их плотности к плотности воздуха:
Газ Химический символ Молярная масса М, г/моль Плотность ρ, кг/м3 Плотность по отношению к воздуху
Азот N2 28,016 l,251 0,967
Аммиак NH3 17,032 0,711 0,597
Аргон Аr 39,944 1,784 1,380
Водород Н2 2,016 0,090 0,070
Воздух - 28,98 1,293 1,000
Гелий Не 4,003 0,178 0,138
Кислород 32,00 1,429 1,105
Криптон Кr 83,7 3,739 2,868
Неон Ne 20,183 0,900 0,696
Окись углерода СО 28,010 1,250 0,967
Углекислый газ СО2 44,010 1,977 1,529

Основные газовые законы

Характерным для газов является то, что они не имеют своего объема и формы, а принимают форму и занимают объем того сосуда, в который их помещают. Газы равномерно наполняют объем сосуда, стремясь расшириться и занять возможно больший объем. Все газы обладают большой сжимаемостью. Молекулы реальных газов обладают объемом и имеют силы взаимного притяжения, хотя эти величины весьма незначительны. В расчетах по реальным газам обычно используют газовые законы для идеальных газов. Идеальные газы - это условные газы, молекулы которых не имеют объема и не взаимодействуют друг с другом из-за отсутствия сил притяжения, а при столкновениях между ними не действуют никакие другие силы, кроме сил упругого удара. Эти газы строго следуют законам Бойля - Мариотта, Гей-Люссака и др.
Чем выше температура и меньше давление, тем поведение реальных газов ближе соответствует идеальным газам. При малых давлениях все газы можно рассматривать как идеальные. При давлениях около 100 кг/см2 отклонения реальных газов от законов идеальных газов не превышают 5 %. Поскольку отклонения реальных газов от законов, выведенных для идеальных газов, обычно ничтожны, законами для идеальных газов можно свободно пользоваться для решения многих практических задач.
Похожие материалы:
    Реферат: Гигиеническое значение, состав, свойства атмосферного воздуха Реферат: Гигиеническое значение, состав, свойства атмосферного воздуха
    Скачать бесплатно реферат: «Гигиеническое значение, состав, свойства атмосферного воздуха»

    Реферат: Расчетное обеспечение водолазных спусков Реферат: Расчетное обеспечение водолазных спусков
    При проведении в барокамерах тренировочных спусков, декомпрессии водолазов после спусков под воду и лечебной рекомпрессии требуется знать параметры вентиляции отсеков, а в случае использования системы регенерации с химическим поглотителем ХП-И - порядок

    Реферат: Конструкции кислородных концентраторов Реферат: Конструкции кислородных концентраторов
    Открытие кислорода Джозефом Пристли 1 августа 1774 года, разложением оксида ртути дало начало развитию новых областей наук. Как известно - кислород это самый широко распространённый элемент на нашей планете, он составляет примерно 47% от массы земной

    Реферат: Атмосферное давление и здоровье Реферат: Атмосферное давление и здоровье
    Жизнь на Земле возможна до тех пор, пока существует земная атмосфера - газовая оболочка, защищающая живые организмы от вредного воздействия космических излучений и резких колебаний температуры. Атмосферным воздухом дышат все аэробные организмы. И когда

    Справочник по теплофизическим свойствам газов и жидкостей - Варгафтик Н.Б.  ... Справочник по теплофизическим свойствам газов и жидкостей - Варгафтик Н.Б. ...
    Справочник содержит подробные данные по теплофизическим свойствам важных для современной техники газов и жидкостей. В книге приведены значения плотности, теплоемкости, энтальпии, энтропии, теплоты парообразования, поверхностного натяжения, скорости

    Реферат: Токсическое действие кислорода. Методики расчёта токсической дозы  ... Реферат: Токсическое действие кислорода. Методики расчёта токсической дозы ...
    В течение последних двух десятилетий исследования токсического действия кислорода достигли высокой активности, что обусловлено широким применением кислорода в различных областях промышленности и в медицине, в том числе при изучении подводных погружений.

    Реферат: Физические опасности декомпрессии Реферат: Физические опасности декомпрессии
    С декомпрессиями связано три вида осложнений. Во-первых, имеются ударные эффекты декомпрессии, при которых пассажир может быть травмирован движением воздушной струи, истекающей из кабины. Во-вторых, имеются осложнения, вызванные фактическим падением

    Физиология дыхания. Основы - Уэст Дж. - 1998 год - 202 с. Физиология дыхания. Основы - Уэст Дж. - 1998 год - 202 с.
    Описание: Джон Б. Уэст - крупнейший специалист в области физиологии дыхания - широко известен как основоположник современной теории о роли вентиляции легких и легочного кровотока в формировании адекватного газообмена организма человека с внешней средой.

    Справочник азотчика. Том 1 - Мельников Е.Я. - 1967 год Справочник азотчика. Том 1 - Мельников Е.Я. - 1967 год
    В первом томе справочника под общей редакцией Е. Я. Мельникова приведены физико-химические свойства газообразных и жидких веществ, применяемых и получаемых на предприятиях азотной промышленности. Описаны различные методы получения и очистки

    Методы и технические средства защиты атмосферного воздуха от загрязнения и  ... Методы и технические средства защиты атмосферного воздуха от загрязнения и ...
    В данной работе сделана попытка объединения материалов, взятых из технической литературы, нормативных документов, журнальных и газетных статей, справочной литературы, а также литературы, рассматривающей экологические проблемы с целью наиболее


Добавление комментария

Ваше Имя:
Ваш E-Mail:

Код:
Включите эту картинку для отображения кода безопасности
обновить, если не виден код
Введите код: