Med-books.by - Библиотека медицинской литературы. Книги, справочники, лекции, аудиокниги по медицине. Банк рефератов. Медицинские рефераты. Всё для студента-медика.
Скачать бесплатно без регистрации или купить электронные и печатные бумажные медицинские книги (DJVU, PDF, DOC, CHM, FB2, TXT), истории болезней, рефераты, монографии, лекции, презентации по медицине.


=> Книги / Медицинская литература: Акупунктура | Акушерство | Аллергология и иммунология | Анатомия человека | Английский язык | Анестезиология и реаниматология | Антропология | БиоХимия | Валеология | Ветеринария | Внутренние болезни (Терапия) | Военная медицина | Гастроэнтерология | Гематология | Генетика | География | Геронтология и гериатрия | Гигиена | Гинекология | Гистология, Цитология, Эмбриология | Гомеопатия | ДерматоВенерология | Диагностика / Методы исследования | Диетология | Инфекционные болезни | История медицины | Йога | Кардиология | Книги о здоровье | Косметология | Латинский язык | Логопедия | Массаж | Математика | Медицина Экстремальных Ситуаций | Медицинская биология | Медицинская информатика | Медицинская статистика | Медицинская этика | Медицинские приборы и аппараты | Медицинское материаловедение | Микробиология | Наркология | Неврология и нейрохирургия | Нефрология | Нормальная физиология | Общий уход | О достижении успеха в жизни | ОЗЗ | Онкология | Оториноларингология | Офтальмология | Паллиативная медицина | Паразитология | Патологическая анатомия | Патологическая физиология | Педиатрия | Поликлиническая терапия | Пропедевтика внутренних болезней | Профессиональные болезни | Психиатрия-Психология | Пульмонология | Ревматология | Сестринское дело | Социальная медицина | Спортивная медицина | Стоматология | Судебная медицина | Тибетская медицина | Топографическая анатомия и оперативная хирургия | Травматология и ортопедия | Ультразвуковая диагностика (УЗИ) | Урология | Фармакология | Физика | Физиотерапия | Физическая культура | Философия | Фтизиатрия | Химия | Хирургия | Экологическая медицина | Экономическая теория | Эндокринология | Эпидемиология | Ядерная медицина

=> Истории болезней: Акушерство | Аллергология и иммунология | Ангиология | Внутренние болезни (Терапия) | Гастроэнтерология | Гематология | Гинекология | ДерматоВенерология | Инфекционные болезни | Кардиология | Наркология | Неврология | Нефрология | Онкология | Оториноларингология | Офтальмология | Педиатрия | Профессиональные болезни | Психиатрия | Пульмонология | Ревматология | Стоматология | Судебная медицина | Травматология и ортопедия | Урология | Фтизиатрия | Хирургия | Эндокринология

=> Рефераты / Лекции: Акушерство | Аллергология и иммунология | Анатомия человека | Анестезиология и реаниматология | Биология | Биохимия | Валеология | Ветеринария | Внутренние болезни (Терапия) | Гастроэнтерология | Генетика | Гигиена | Гинекология | Гистология, Цитология, Эмбриология | Диагностика | ДерматоВенерология | Инфекционные болезни | История медицины | Лечебная физкультура / Физическая культура | Кардиология | Массаж | Медицинская реабилитация | Микробиология | Наркология | Неврология | Нефрология | Нормальная физиология | Общий уход / Сестринское дело | Озз | Онкология | Оториноларингология | Офтальмология | Патологическая анатомия | Педиатрия | ПатоФизиология | Профессиональные болезни | Психиатрия-Психология | Пульмонология | Ревматология | Скорая и неотложная медицинская помощь | Стоматология | Судебная медицина | Токсикология | Травматология и ортопедия | Урология | Фармакогнозия | Фармакология | Фармация | Физиотерапия | Фтизиатрия | Химия | Хирургия | Эндокринология | Эпидемиология | Этика и деонтология

=> Другие разделы: Авторы | Видео | Клинические протоколы / Нормативная документация РБ | Красота и здоровье | Медицинские журналы | Медицинские статьи | Наука и техника | Новости сайта | Практические навыки | Презентации | Шпаргалки


Med-books.by - Библиотека медицинской литературы » Рефераты: Нормальная физиология » Реферат: Классификация синапсов

Реферат: Классификация синапсов

0

Скачать бесплатно реферат:
«Классификация синапсов»


СОДЕРЖАНИЕ

ВВЕДЕНИЕ
ОБЩИЕ ПОЛОЖЕНИЯ И ИСТОРИЯ ОТКРЫТИЯ
КЛАССИФИКАЦИИ СИНАПСОВ
СТРУКТУРА ХИМИЧЕСКОГО СИНАПСА
СТРУКТУРА ЭЛЕКТРИЧЕСКОГО СИНАПСА
МЕХАНИЗМ ПЕРЕДАЧИ НЕРВНОГО ИМПУЛЬСА
КВАНТОВО-ВЕЗИКУЛЯРНАЯ ГИПОТЕЗА
ГИПОТЕЗА ПОРОЦИТОЗА
СРАВНЕНИЕ ГИПОТЕЗ ПОРОЦИТОЗА И КВАНТОВО-ВЕЗИКУЛЯРНОЙ
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

На сегодняшний день создан ряд технологий имплантации различных искусственных органов, которые в течение длительного времени не отторгаются организмом. Одна из проблем, которая тормозит развитие этой отрасли, заключается в интеграции нервной системы и кибернетического устройства. Проще говоря, в создании связи между нервом и процессором протеза.
Выход из данной проблемы - изящный, и не требующий грубого внедрения в нервную ткань электродов - заключается в создании синаптической связи. Синапс - произведение самой природы - является идеальной формой интеграции работы как различных нервных окончаний, так и органов-эффекторов (мышцы, секреторная ткань).
Для того, чтобы это осуществить, требуется изучить строение и физиологию различных синапсов.
синапс нервный импульс физиология

ОБЩИЕ ПОЛОЖЕНИЯ И ИСТОРИЯ ОТКРЫТИЯ

Синапс - место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём посредством прохождения ионов из одной клетки в другую. Как правило, под синапсом понимают химический синапс , в котором сигналы передаются с помощью нейротрансмиттеров . Типичные синапсы - это образования, сформированные терминалями аксона одного нейрона и дендритами другого (аксо-дендритные синапсы). Но есть и другие типы: аксосоматические, аксо-аксональные и дендро-дендритные. Синапс между аксоном мотонейрона и волокном скелетной мышцы называется двигательной концевой пластинкой, или нервно-мышечным соединением . В нервной системе существуют два вида синапсов: возбуждающие и тормозные синапсы . В возбуждающих синапсах одна клетка вызывает активизацию другой. При этом возбуждающий медиатор вызывает деполяризацию - поток ионов Na+ устремляется в клетку. В тормозящих синапсах одна клетка тормозит активизацию другой. Это связано с тем, что тормозящий медиатор вызывает устремление потока отрицательно заряженных ионов в клетки, поэтому деполяризации не происходит.
Нервный импульс поступает в синапс по пресинаптическому окончанию, которое ограничено пресинаптической мембраной (пресинаптической частью) и воспринимается постсинаптической мембраной (постсинаптической частью). Между мембранами расположена синаптическая щель. В пресинаптическом окончании имеется множество митохондрий и пресинаптических пузырьков, содержащих медиатор. Нервный импульс, поступающий в пресинапти-ческое окончание, вызывает освобождение в синаптичес-кую щель медиатора. Молекулы медиаторов реагируют со специфическими рецепторными белками клеточной мембраны, меняя ее проницаемость для определенных - ионов, что приводит к возникновению потенциала действия. Наряду с химическими, имеются электротонические синапсы, в которых передача импульсов происходит непосредственно биоэлектрическим путем, между контактирующими клетками.
В зависимости от природы проходящих через синапсы сигналов, синапсы делятся на электрические синапсы и химические синапсы . Химические синапсы - это синапсы, в которых передача осуществляется с помощью биологически активных веществ, а вещества, осуществляющие передачу, - нейромедиаторами .
• В 1897 году Шеррингтон сформулировал представление о синапсах.
• За исследования нервной системы, в том числе синаптической передачи, в 1906 году Нобелевскую премию получили Гольджи и Рамон-и-Кахаль .
• В 1921 австрийский учёный О. Лёви (О. Loewi) установил химическую природу передачи возбуждения через синапсы и роль в ней ацетилхолина. Получил Нобелевскую премию в 1936 г. совместно с Г. Дейлом (Н. Dale).
• В 1933 советский учёный А.В. Кибяков установил роль адреналина в синаптической передаче.
• 1970 - Б. Кац (В. Katz, Великобритания), У. фон Эйлер (U. v. Euler, Швеция) и Дж. Аксельрод (J. Axelrod, США) получили Нобелевскую премию за открытие роли норадреналина в синаптической передаче.

КЛАССИФИКАЦИИ СИНАПСОВ

По механизму передачи нервного импульса:
• химический - это место близкого прилегания двух нервных клеток, для передачи нервного импульса через которое клетка-источник выпускает в межклеточное пространство особое вещество, нейромедиатор , присутствие которого в синаптической щели возбуждает или затормаживает клетку-приёмник.
• электрический (эфапс) - место более близкого прилегания пары клеток, где их мембраны соединяются с помощью особых белковых образований - коннексонов (каждый коннексон состоит из шести белковых субъединиц). Расстояние между мембранами клетки в электрическом синапсе - 3,5 нм (обычное межклеточное - 20 нм). Так как сопротивление внеклеточной жидкости мало (в данном случае), импульсы через синапс проходят не задерживаясь. Электрические синапсы обычно бывают возбуждающими.
• смешанные синапсы - пресинаптический потенциал действия создает ток, который деполяризует постсинаптическую мембрану типичного химического синапса, где пре - и постсинаптические мембраны не плотно прилегают друг к другу. Таким образом, в этих синапсах химическая передача служит необходимым усиливающим механизмом.
Наиболее распространены химические синапсы. Для нервной системы млекопитающих электрические синапсы менее характерны, чем химические.
По местоположению и принадлежности структурам:
• периферические
• нервно-мышечные
• нейросекреторные (аксо-вазальные)
• рецепторно-нейрональные
• центральные
• аксо-дендритические - с дендрит ами, в том числе
• аксо-шипиковые - с дендритными шипиками , выростами на дендритах;
• аксо-соматические - с телами нейронов;
• аксо-аксональные - между аксонами;
• дендро-дендритические - между дендритами;
По нейромедиатору :
• аминергические , содержащие биогенные амины (например, серотонин , дофамин );
• в том числе адренергические , содержащие адреналин или норадреналин ;
• холинергические , содержащие ацетилхолин ;
• пуринергические , содержащие пурины ;
• пептидергические , содержащие пептиды .
При этом в синапсе не всегда вырабатывается только один медиатор. Обычно основной медиатор выбрасывается вместе с другим, играющим роль модулятора.
По знаку действия
• возбуждающие
• тормозные.
Если первые способствуют возникновению возбуждения в постсинаптической клетке (в них в результате поступления импульса происходит деполяризация мембраны, которая может вызвать потенциал действия при определённых условиях.), то вторые, напротив, прекращают или предотвращают его появление, препятствуют дальнейшему распространению импульса. Обычно тормозными являются глицинергические (медиатор - глицин ) и ГАМК-ергические синапсы (медиатор - гамма-аминомасляная кислота ).
Тормозные синапсы бывают двух видов:
) синапс, в пресинаптических окончаниях которого выделяется медиатор, гиперполяризующий постсинаптическую мембрану и вызывающий возникновение тормозного постсинаптического потенциала;
) аксо-аксональный синапс, обеспечивающий пресинаптическое торможение. Синапс холинергический (s. cholinergica) - синапс, медиатором в котором является ацетилхолин.
В некоторых синапсах присутствует постсинаптическое уплотнение - электронно-плотная зона, состоящая из белков. По её наличию или отсутствию выделяют синапсы асимметричные исимметричные. Известно, что все глутаматергические синапсы асимметричны, а ГАМКергические - симметричны.
В случаях, когда с постсинаптической мембраной контактирует несколько синаптических расширений, образуются множественные синапсы.
К специальным формам синапсов относятся шипиковые аппараты , в которых с синаптическим расширением контактируют короткие одиночные или множественные выпячивания постсинаптической мембраны дендрита. Шипиковые аппараты значительно увеличивают количество синаптических контактов на нейроне и, следовательно, количество перерабатываемой информации. "Не-шипиковые" синапсы называются "сидячими". Например, сидячими являются все ГАМК-ергические синапсы.

СТРУКТУРА ХИМИЧЕСКОГО СИНАПСА

Подавляющее большинство синапсов в нервной системе царства животных являются именно химическими. Для них характерно наличие нескольких общих черт, хотя, тем не менее, размеры и форма пре - и постсинаптических компонентов варьируют очень широко. Синапсы в коре головного мозга млекопитающих имеют претерминальные аксоны около 100 нанометров толщиной и пресинаптические бутоны со средним диаметром около 1 микрометра.
Химический синапс состоит из двух частей: пресинаптической, образованной булавовидным расширением окончанием аксона передающей клетки и постсинаптической, представленной контактирующим участком плазматической мембраны воспринимающей клетки. Между обеими частями имеется синаптическая щель - промежуток шириной 10-50 нм между постсинаптической и пресинаптической мембранами, края которой укреплены межклеточными контактами.
Часть аксолеммы булавовидного расширения, прилежащая к синаптической щели, называется пресинаптической мембраной. Участок цитолеммы воспринимающей клетки, ограничивающий синаптическую щель с противоположной стороны, называется постсинаптической мембраной, в химических синапсах она рельефна и содержит многочисленные рецепторы .
В синаптическом расширении имеются мелкие везикулы , так называемые пресинаптические или синаптические пузырьки , содержащие либомедиатор (вещество-посредник в передаче возбуждения), либо фермент , разрушающий этот медиатор. На постсинаптической, а часто и на пресинаптической мембранах присутствуют рецепторы к тому или иному медиатору.
Одинаковый размер пресинаптических пузырьков во всех исследованных синапсах (40-50 нанометров) сначала считали доказательством того, что каждая везикула является минимальным кластером, чье освобождение требуется для производства синаптического сигнала. Везикулы размещаются напротив пресинаптической мембраны, что обусловлено их функциональным назначением для высвобождения медиатора в синаптическую щель. Также около пресинаптического пузырька имеется большое количество митохондрий (производящих аденозинтрифосфат ) и упорядоченные структуры протеиновых волокон.
Синаптическая щель - это пространство между пресинаптическим пузырьком и постсинаптической мембраной от 20 до 30 нанометров шириной, которое содержит связующие пре - и постсинапс структуры, построенные из протеогликана . Ширина синаптической щели в каждом отдельном случае обусловлена тем, что извлеченный из пресинапса медиатор должен проходить к постсинапсу за время, являющееся значительно меньше частоты нервных сигналов, характерных для нейронов, образующих синапс (время прохождения медиатора от пре - к постсинаптической мембране - порядка нескольких микросекунд).
Постсинаптическая мембрана принадлежит клетке, которая принимает нервные импульсы. Механизмом трансляции химического сигнала медиатора в электрический потенциал действия на этой клетке являются рецепторы - белковые макромолекулы, встроенные в постсинаптическую мембрану. С помощью специальных ультрамикроскопичекских методик в последние годы был получен достаточно большой объем информации о детальной структуре синапсов.
Так, на пресинаптической мембране была открыта упорядоченная струтура кратероподобных углублений диаметром 10 нанометров, вдавленных внутрь. Сначала их именовали синаптопорами, но сейчас эти структуры называют местами присоединения везикул (МПВ). МПВ собраны в упорядоченные группы численностью по шесть отдельных углублений вокруг так называемых уплотненных выступлений. Таким образом, уплотненные выступления формируют правильные треугольные структуры на внутренней стороне пресинаптической мембраны, а МПВ - гексагональные , и являются местами, где везикулы открываются и выбрасывают медиатор в синаптическую щель.

СТРУКТУРА ЭЛЕКТРИЧЕСКОГО СИНАПСА

В отличие от химического синапса, синаптическая щель в электрическом синапсе чрезвычайно узка (около 3,5 нанометров ). Через синаптическую щель данного типа синапсов, проходят пространственно упорядоченные белковые каналы с гидрофильной порой, каждый примерно 5 нанометров в диаметре, которые перфорируют пре - и постсинаптическую мембрану и называются коннексонами . У первичноротых организмов (нематоды , моллюски , членистоногие ) коннексоны сформированы белками паннексинами или иннексинами); у вторичноротых (асцидии , позвоночные ) коннексоны построены из белков другого типа - коннексинов , которые кодируются другой группой генов. У иглокожих пока не обнаружены ни паннексины, ни коннексины; возможно, у них имеется еще одно семейство белков, формирующих щелевые контакты и электрические синапсы.
У позвоночных есть и паннексины, и коннексины. Но до сих пор у позвоночных не выявлено ни одного электрического синапса, где межклеточные каналы были бы сформированы паннексинами.
Через коннексины (или паннексины), связывающие пре - и постсинаптический нейроны , проходят ионы и малые молекулы, в том числе искусственно введенные в клетку флуоресцентные красители. Проход указанных красителей через электрический синапс может быть зарегистрирован даже с помощью светового микроскопа .
Электрические синапсы позволяют осуществлять электрическую проводимость в обоих направлениях (в отличие от химических); тем не менее, в последнее время у некоторых ракообразных были открыты выпрямляющие электрические синапсы, то есть такие, которые позволяют осуществлять прохождение нервного сигнала только в одном направлении.

МЕХАНИЗМ ПЕРЕДАЧИ НЕРВНОГО ИМПУЛЬСА

Поступление электрического импульса к пресинаптической мембране включает процесс синаптической передачи, первым этапом которой является вхождение ионов Са2+ в пресинапс сквозь мембрану через специализированные кальциевые каналы, локализованные у синаптической щели. Ионы Са2+, с помощью неизвестного пока полностью механизма, активируют везикулы, скученные у своих мест присоединения, и те высвобождают медиатор в синаптическую щель. Вошедшие в нейрон ионы Са2+, после активации ими везикул с медиатором, деактивируются за время порядка нескольких микросекунд, благодаря депонированию в митохондриях и везикулах пресинапса.
Молекулы медиатора, высвобождаемые из пресинапса, связываются с рецепторами на постсинаптической мембране, в результате чего в рецепторных макромолекулах открываются ионные каналы (в случае канальных рецепторов, что является наиболее распространенным их типом; при работе рецепторов других типов механизм передачи сигнала отличается). Ионы, которые начинают поступать внутрь постсинаптической клетки через открытые каналы, изменяют заряд её мембраны, что является частичной поляризацией (в случае тормозного синапса) или деполяризацией (в случае возбуждающего синапса) этой мембраны и, как следствие, приводит к торможению или провоцированию генерации постсинаптической клеткой потенциала действия.

КВАНТОВО-ВЕЗИКУЛЯРНАЯ ГИПОТЕЗА

Распространенная до последнего времени в качестве объяснения механизма высвобождения медиатора из пресинапса, гипотеза квантово-везикулярного экзоцитоза (КВЭ) подразумевает, что "пакет", или квант, медиатора содержится в одной везикуле и высвобождается при экзоцитозе (при этом мембрана везикулы сливается с клеточной пресинаптической мембраной). Эта теория была долгое время превалирующей гипотезой - несмотря на то, что корреляция между уровнем высвобождения медиатора (или постсинаптическими потенциалами) и количеством везикул в пресинапсе отсутствует. Кроме того, гипотеза КВЭ имеет и другие существенные недостатки.
Физиологической основой именно квантованного высвобождения медиатора должно быть одинаковое количество этого медиатора в каждой везикуле. Гипотеза КВЭ в классическом виде не приспособлена к описанию эффектов квантов разного размера (или разного количества медиатора) которые могут быть высвобождены при одном акте экзоцитоза. При этом надо принять во внимание, что в одном и том же пресинаптическом бутоне могут наблюдаться везикулы разного размера; кроме того, не найдено корреляции между размером везикулы и количеством медиатора в ней (то есть его концентрация в везикулах тоже может быть разной). Более того, в денервированном нервно-мышечном синапсе шванновские клетки генерируют большее количество миниатюрных постсинаптических потенциалов, чем наблюдается в синапсе до денервации, несмотря на полное отсутствие в этих клетках пресинаптических везикул, локализованных в районе пресинаптического бутона.

ГИПОТЕЗА ПОРОЦИТОЗА

Существуют существенные экспериментальные подтверждения того, что медиатор секретируется в синаптическую щель благодаря синхронной активации гексагональных групп МПВ (см. выше) и присоединенных к ним везикул, что стало основой для формулирования гипотезы пороцитоза (англ. porocytosis). Эта гипотеза базируется на наблюдении, что присоединенные к МПВ везикулы, при получении потенциала действия , синхронно сокращаются и при этом секретируют в синаптическую щель каждый раз одинаковое количество медиатора, высвобождая только часть содержимого каждой из шести везикул. Сам по себе термин "пороцитоз" происходит от греческих слов poro (что означает поры) и cytosis (описывает перенос химических субстанций через плазматическую мембрану клетки).
Большинство экспериментальных данных о функционировании моносинаптических межклеточных соединений получены благодаря исследованиям изолированных нервно-мышечных контактов. Как и в межнейронных, в нервно-мышечных синапсах МПВ формируют упорядоченные гексагональные структуры. Каждая из таких гексагональных структур может быть определена как "синаптомер" - то есть структура, которая является элементарной единицей в процессе секреции медиатора. Синаптомер содержит, кроме собственно поровых углублений, протеиновые нитчатые структуры, содержащие линейно упорядоченные везикулы; существование аналогичных структур доказано и для синапсов в центральной нервной системе (ЦНС).
Как было сказано выше, пороцитозный механизм генерирует квант нейромедиатора , но без того, чтобы мембрана индивидуальной везикулы полностью сливалась с пресинаптической мембраной. Малый коэффициент вариации (менее 3 %) у величин постсинаптических потенциалов является индикатором того, что в единичном синапсе имеются не более 200 синаптомеров, каждый из которых секретирует один квант медиатора в ответ на один потенциал действия. 200 участков высвобождения (то есть синаптомеров, которые высвобождают медиатор), найденные на небольшом мышечном волокне, позволяют рассчитать максимальный квантовый лимит, равный одной области высвобождения на микрометр длины синаптического контакта, это наблюдение исключает возможность существования квантов медиатора, обеспечивающих передачу нервного сигнала, в объеме одной везикулы.

СРАВНЕНИЕ ГИПОТЕЗ ПОРОЦИТОЗА И КВАНТОВО-ВЕЗИКУЛЯРНОЙ

Сравнение недавно общепринятой гипотезы КВЭ с гипотезой пороцитоза может быть осуществлено посредством сравнения теоретического коэффициента вариации с опытным, рассчитанным для амплитуд постсинаптических электрических потенциалов, генерируемых в ответ на каждый отдельный выброс медиатора из пресинапса. Если принять, что процесс экзоцитоза проходит в небольшом синапсе, где содержится около 5 000 везикул (50 на каждый микрон длины синапса), постсинаптические потенциалы должны быть сгенерированы 50-ю случайно выбранными везикулами, что даёт теоретический коэффициент вариации 14 %. Эта величина примерно в 5 раз больше, чем коэффициент вариации постсинаптических потенциалов, получаемых в опытах, таким образом, можно утверждать, что процесс экзоцитоза в синапсе не является случайным (не совпадает с распределением Пуассона ) - что невозможно, если объяснять его в рамках гипотезы КВЭ, но вполне соответствует гипотезе пороцитоза. Дело в том, что гипотеза пороцитоза предполагает, что все связанные с пресинаптической мембраной везикулы выбрасывают медиатор одновременно; при этом постоянное количество медиатора, выбрасываемого в синаптическую щель в ответ на каждый потенциал действия (об устойчивости свидетельствует малый коэффициент вариации постсинаптических ответов) вполне может быть объяснено высвобождением малого объема медиатора большим количеством везикул - при этом, чем больше везикул, участвующих в процессе, тем меньше становится коэффициент корреляции , хотя это и выглядит с точки зрения математической статистики несколько парадоксально.
Так называемый "принцип Дейла " (один нейрон - один медиатор) признан ошибочным. Или, как иногда считают, он уточнён: из одного окончания клетки может выделяться не один, а несколько медиаторов, причём их набор постоянен для данной клетки.

ЗАКЛЮЧЕНИЕ

Т.о., был рассмотрен вопрос о строении и принципе работы химического синапса. И хотя еще есть вопросы, на которые требуются уточнения, тем не менее, наличие знаний о синаптических связей между нервной тканью - огромный шаг в области нейробиологии. Именно он позволяет почти невозможное - операции по восстановлению нервной деятельности, тончайшие интеграции машины и живой ткани, и в дальнейшем - истинный симбиоз живой, и искусственной, созданной человеком, природ.

СПИСОК ЛИТЕРАТУРЫ

1. Савельев А.В. Источники вариаций динамических свойств нервной системы на синаптическом уровне // Искусственный интеллект. - НАН Украины, Донецк, 2006. - № 4. - С.323-338.
2. Савельев А.В. Методология синаптической самоорганизации и проблема дистальных синапсов нейронов // Журнал проблем эволюции открытых систем. - Казахстан, Алматы, 2006. - Т.8. - № 2. - С.96-104.
3. Экклз Д.К. Физиология синапсов. - М.: Мир, 1966. - 397 с.
Похожие материалы:
    Синаптическая везикула и механизм освобождения медиатора - Зефиров А.Л., Пе ... Синаптическая везикула и механизм освобождения медиатора - Зефиров А.Л., Пе ...
    В современной биологической науке исследованиям молекулярных механизмов синаптической передачи в химических синапсах отводится особое место, поскольку события, протекающие в синапсе, служат отправной точкой основных и самых сложных феноменов нервной

    Реферат: Физиология мышц и синапсов Реферат: Физиология мышц и синапсов
    У человека различают три вида мышц: поперечно-полосатые скелетные мышцы; поперечно-полосатая сердечная мышца; гладкие мышцы внутренних органов, кожи, сосудов. Мышцы обладают физическими и физиологическими свойствами. Рассмотрим те свойства, которые

    Реферат: СИНАПСЫ  (строение, структура, функции) Реферат: СИНАПСЫ (строение, структура, функции)
    План работы: 1.Пролог. 2.Физиология нейрона и его строение. 3.Структура и функции синапса. 4.Химический синапс. 5.Выделение медиатора. 6.Химические медиаторы и их виды. 7.Эпилог. 8.Список литературы.

    Реферат: Структура и функция синапса. Классификации синапсов. Химический си ... Реферат: Структура и функция синапса. Классификации синапсов. Химический си ...
    За согласованную деятельность различных органов и систем, а также за регуляцию функций организма отвечает нервная система. Она осуществляет также связь организма с внешней средой, благодаря чему мы чувствуем различные изменения в окружающей среде и

    Биохимия нервной ткани Биохимия нервной ткани
    По своему соcтаву и процессам метаболизма нервная ткань значительно отличается от других тканей. Центральная функциональная клетка нервной ткани - нейрон - связана с помощью дендритов и аксонов с такими же клетками и клетками других типов, например,

    Нерв, мышца и синапс - Катц Б., Гурфинкель В.С. - 1966 год - 220 с. Нерв, мышца и синапс - Катц Б., Гурфинкель В.С. - 1966 год - 220 с.
    Описание: В этой небольшой книжке известный английский физиолог и биофизик в доступной и увлекательной форме обобщил все современные данные о процессе передачи информации в организме человека. После краткого описания строения нервной и мышечной систем,

    Реферат: Пептидные медиаторы Реферат: Пептидные медиаторы
    Медиаторами синапсов ЦНС являются многие химические вещества. На настоящее время в головном мозге обнаружено около 30 таких биологически активных веществ. Вещество, из которого синтезируется медиатор (предшественник медиатора) попадает в нейрон или его

    Реферат: Классификация и ультраструктурное строение межклеточных соединений Реферат: Классификация и ультраструктурное строение межклеточных соединений
    Введение 1. Рыхлые, или простые соединения 2. Сцепляющие контакты 2.1 Адгезивный поясок 2.2 Десмосома 2.3 Полудесмосома 2.4 Фокальный контакт 3. Коммуникационные соединения 3.1 Нексус 3.2 Синапсы 4. Запирающие соединения 4.1 Плотный контакт 5.

    Реферат: Гамма-аминомасляная кислота Реферат: Гамма-аминомасляная кислота
    γ-Аминомасляная кислота (ГАМК, GABA, 4-аминобутановая кислота) — аминокислота, важнейший тормозной нейромедиатор центральной нервной системы человека и млекопитающих., рецепторы которого широко распространены в структурах головного мозга.

    Реферат: Нейрофизиология. Как рождается движение Реферат: Нейрофизиология. Как рождается движение
    План: 1. морфофизиология нервной системы 2. биохимия нервной системы 3. нейрофизиологические процессы, обеспечивающие произвольные движения.


Добавление комментария

Ваше Имя:
Ваш E-Mail:

Код:
Включите эту картинку для отображения кода безопасности
обновить, если не виден код
Введите код: