Med-books.by - Библиотека медицинской литературы. Книги, справочники, лекции, аудиокниги по медицине. Банк рефератов. Медицинские рефераты. Всё для студента-медика.
Скачать бесплатно без регистрации или купить электронные и печатные бумажные медицинские книги (DJVU, PDF, DOC, CHM, FB2, TXT), истории болезней, рефераты, монографии, лекции, презентации по медицине.


=> Книги / Медицинская литература: Акупунктура | Акушерство | Аллергология и иммунология | Анатомия человека | Английский язык | Анестезиология и реаниматология | Антропология | БиоХимия | Валеология | Ветеринария | Внутренние болезни (Терапия) | Военная медицина | Гастроэнтерология | Гематология | Генетика | География | Геронтология и гериатрия | Гигиена | Гинекология | Гистология, Цитология, Эмбриология | Гомеопатия | ДерматоВенерология | Диагностика / Методы исследования | Диетология | Инфекционные болезни | История медицины | Йога | Кардиология | Книги о здоровье | Косметология | Латинский язык | Логопедия | Массаж | Математика | Медицина Экстремальных Ситуаций | Медицинская биология | Медицинская информатика | Медицинская статистика | Медицинская этика | Медицинские приборы и аппараты | Медицинское материаловедение | Микробиология | Наркология | Неврология и нейрохирургия | Нефрология | Нормальная физиология | Общий уход | О достижении успеха в жизни | ОЗЗ | Онкология | Оториноларингология | Офтальмология | Паллиативная медицина | Паразитология | Патологическая анатомия | Патологическая физиология | Педиатрия | Поликлиническая терапия | Пропедевтика внутренних болезней | Профессиональные болезни | Психиатрия-Психология | Пульмонология | Ревматология | Сестринское дело | Социальная медицина | Спортивная медицина | Стоматология | Судебная медицина | Тибетская медицина | Топографическая анатомия и оперативная хирургия | Травматология и ортопедия | Ультразвуковая диагностика (УЗИ) | Урология | Фармакология | Физика | Физиотерапия | Физическая культура | Философия | Фтизиатрия | Химия | Хирургия | Экологическая медицина | Экономическая теория | Эндокринология | Эпидемиология | Ядерная медицина

=> Истории болезней: Акушерство | Аллергология и иммунология | Ангиология | Внутренние болезни (Терапия) | Гастроэнтерология | Гематология | Гинекология | ДерматоВенерология | Инфекционные болезни | Кардиология | Наркология | Неврология | Нефрология | Онкология | Оториноларингология | Офтальмология | Педиатрия | Профессиональные болезни | Психиатрия | Пульмонология | Ревматология | Стоматология | Судебная медицина | Травматология и ортопедия | Урология | Фтизиатрия | Хирургия | Эндокринология

=> Рефераты / Лекции: Акушерство | Аллергология и иммунология | Анатомия человека | Анестезиология и реаниматология | Биология | Биохимия | Валеология | Ветеринария | Внутренние болезни (Терапия) | Гастроэнтерология | Генетика | Гигиена | Гинекология | Гистология, Цитология, Эмбриология | Диагностика | ДерматоВенерология | Инфекционные болезни | История медицины | Лечебная физкультура / Физическая культура | Кардиология | Массаж | Медицинская реабилитация | Микробиология | Наркология | Неврология | Нефрология | Нормальная физиология | Общий уход / Сестринское дело | Озз | Онкология | Оториноларингология | Офтальмология | Патологическая анатомия | Педиатрия | ПатоФизиология | Профессиональные болезни | Психиатрия-Психология | Пульмонология | Ревматология | Скорая и неотложная медицинская помощь | Стоматология | Судебная медицина | Токсикология | Травматология и ортопедия | Урология | Фармакогнозия | Фармакология | Фармация | Физиотерапия | Фтизиатрия | Химия | Хирургия | Эндокринология | Эпидемиология | Этика и деонтология

=> Другие разделы: Авторы | Видео | Клинические протоколы / Нормативная документация РБ | Красота и здоровье | Медицинские журналы | Медицинские статьи | Наука и техника | Новости сайта | Практические навыки | Презентации | Шпаргалки


Med-books.by - Библиотека медицинской литературы » Рефераты: Диагностика » Реферат: Основы работы магнитно-резонансных томографов. Техническое обслуживание

Реферат: Основы работы магнитно-резонансных томографов. Техническое обслуживание

0

Скачать бесплатно реферат:
«Основы работы магнитно-резонансных томографов. Техническое обслуживание»


Содержание

Введение
. История открытия и сущность ядерно-магнитного резонанса
. Химический сдвиг
. Спин-спиновое взаимодействие
. Исследование МР томографии и устройство МР томографа
. Физические основы явления ЯМР
. МР-сигнал
. Контрастность изображения: протонная плотность, Т1- и Т2-взвешенность
8. Противопоказания и потенциальные опасности
. Техническое обслуживание
Заключение
Список литературы


Введение

Магнитно-резонансная томография (МРТ, MRT, MRI) - томографический метод исследования внутренних органов и тканей с использованием физического явления ядерного магнитного резонанса - метод основан на измерении электромагнитного отклика ядер атомов водорода на возбуждение их определённой комбинацией электромагнитных волн в постоянном магнитном поле высокой напряжённости.
Магнитно резонансная томография (МРТ) - это современный, безопасный (без ионизирующего излучения) и надёжный метод лучевой диагностики. МРТ является уникальным и практически не имеющим аналогов исследованием для диагностики заболеваний центральной нервной системы, позвоночника, мышечно-суставной системы и ряда внутренних органов.
К достоинствам метода относится возможность получения изображений в разных плоскостях (полипроекционность), неиванзивность, отсутствие необходимости предварительной подготовки.
В ряде случаев возникает диагностическая необходимость проведения магнитнорезонансной томографии исследования с внутривенным контрастным усилением.

1. История открытия и сущность ядерно-магнитного резонанса

До недавнего времени основой наших представлений о структуре атомов и молекул служили исследования методами оптической спектроскопии. В связи с усовершенствованием спектральных методов, продвинувших область спектроскопических измерений в диапазон сверхвысоких (примерно 103 - 106 МГц; микрорадиоволны) и высоких частот (примерно 10-2 - 102 МГц; радиоволны), появились новые источники информации о структуре вещества. При поглощении и испускании излучения в этой области частот происходит тот же основной процесс, что и в других диапазонах электромагнитного спектра, а именно при переходе с одного энергетического уровня на другой система поглощает или испускает квант энергии.
Разность энергий уровней и энергия квантов, участвующих в этих процессах, составляют около 10-7 эВ для области радиочастот и около 10-4 эВ для сверхвысоких частот. В двух видах радиоспектроскопии, а именно в спектроскопии ядерного магнитного резонанса (ЯМР) и ядерного квадрупольного резонанса (ЯКР), разница энергий уровней связана с различной ориентацией соответственно магнитных дипольных моментов ядер в приложенном магнитном поле и электрических квадрупольных моментов ядер в молекулярных электрических полях, если последние не являются сферически симметричными.
Существование ядерных моментов впервые было обнаружено при изучении сверхтонкой структуры электронных спектров некоторых атомов с помощью оптических спектрометров с высокой разрешающей способностью.
Под влиянием внешнего магнитного поля магнитные моменты ядер ориентируются определенным образом и появляется возможность наблюдать переходы между ядерными энергетическими уровнями, связанными с этими разными ориентациями: переходы, происходящие под действием излучения определенной частоты. Квантование энергетических уровней ядра является прямым следствием квантовой природы углового момента ядра, принимающего 2I+ 1 значений. Спиновое квантовое число (спин) может принимать любое значение, кратное 1/2; наиболее высоким из известных значений I ( 7) обладает 17671Lu. Наибольшее измеримое значение углового момента (наибольшее значение проекции момента на выделенное направление) равно iħ, где ħ = h/2л, а h - постоянная Планка.
Значения I для конкретных ядер предсказать нельзя, однако было замечено, что изотопы, у которых и массовое число, и атомный номер четные, имеют I = 0, а изотопы с нечетными массовыми числами имеют полуцелые значения спина. Такое положение, когда числа протонов и нейтронов в ядре четные и равны (I=0), можно рассматривать как состояние с "полным спариванием", аналогичным полному спариванию электронов в диамагнитной молекуле.
В конце 1945 года двумя группами американских физиков под руководством Ф. Блоха (Станфорский университет) и Э.М. Парселла (Гарвардский университет) впервые были получены сигналы ядерного магнитного резонанса. Блох наблюдал резонансное поглощение на протонах в воде, а Парселл добился успеха в обнаружении ядерного резонанса на протонах в парафине. За это открытие они в 1952 году были удостоены Нобелевской премии.
Ниже излагаются сущность явления ЯМР и его отличительные особенности.
Сущность явления ЯМР можно проиллюстрировать следующим образом. Если ядро, обладающее магнитным моментом, помещено в однородное поле H0, направленное по оси z, то его энергия (по отношению к энергии при отсутствии поля) равна zH0, где z - проекция ядерного магнитного момента на направление поля.
Как уже отмечалось, ядро может находиться в 2I+ 1 состояниях. При отсутствии внешнего поля H0 все эти состояния имеют одинаковую энергию. Если обозначить наибольшее измеримое значение компоненты магнитного момента через , то все измеримые значения компоненты магнитного момента (в данном случае z) выражаются в виде m, где m - квантовое число, которое может принимать, как известно, значения

m = I, I- 1,1- 2,...,-(I- 1), -I.

Так как расстояние между уровнями энергии, соответствующими каждому из 2I + 1 состояний, равно mH0/I, то ядро со спином I имеет дискретные уровни энергии

Расщепление уровней энергии в магнитном поле можно назвать ядерным зеемановским расщеплением, так как оно аналогично расщеплению электронных уровней в магнитном поле (эффект Зеемана). Зеемановское расщепление проиллюстрировано на рис. 1 для системы с I = 1 (с тремя уровнями энергии).

Явление ЯМР состоит в резонансном поглощении электромагнитной энергии, обусловленном магнетизмом ядер. Отсюда вытекает очевидное название явления: ядерный - речь идет о системе ядер, магнитный - имеются в виду только их магнитные свойства, резонанс - само явление носит резонансный характер. Действительно, из правил частот Бора следует, что частота у электромагнитного поля, вызывающего переходы между соседними уровнями, определяется формулой

(1)

Так как векторы момента количества движения (углового момента) и магнитного момента параллельны, то часто удобно характеризовать магнитные свойства ядер величиной , определяемой соотношением

=(Ih) (2)

где - гиромагнитное отношение, имеющее размерность радиан • эрстед-1 • секунда-1 (рад • Э-1 • с-1) или радиан/(эрстед • секунда) (рад/(Э • с)). С учетом этого найдем

(3)

Таким образом, частота пропорциональна приложенному полю.
Если в качестве типичного примера взять значение  для протона, равное 2,6753 • 104 рад/(Э • с), и H0 = 10000 Э, то резонансная частота
Такая частота может быть генерирована обычными радиотехническими методами.
Спектроскопия ЯМР характеризуется рядом особенностей, выделяющих ее среди других аналитических методов. Около половины (150) ядер известных изотопов имеют магнитные моменты, однако только меньшая часть их систематически используется.
До появления спектрометров, работающих в импульсном режиме, большинство исследований выполнялось с использованием явления ЯМР на ядрах водорода (протонах) 1H (протонный магнитный резонанс - ПМР) и фтора 19F. Эти ядра обладают идеальными для спектроскопии ЯМР свойствами:
• высокое естественное содержание "магнитного" изотопа (1H 99,98%, 19F 100%); для сравнения можно упомянуть, что естественное содержание "магнитного" изотопа углерода 13C составляет 1,1%;
• большой магнитный момент;
• спин I= 1/2.
Это обусловливает прежде всего высокую чувствительность метода при детектировании сигналов от указанных выше ядер. Кроме того, существует теоретически строго обоснованное правило, согласно которому только ядра со спином, равным или большим единицы, обладают электрическим квадрупольным моментом. Следовательно, эксперименты по ЯМР 1H и 19F не осложняются взаимодействием ядерного квадрупольного момента ядра с электрическим окружением. Большое количество работ было посвящено резонансу на других (помимо 1H и 19F) ядрах, таких, как 13C, 31P, 11B, 17O в жидкой фазе (так же, как и на ядрах 1H и 19F).
Внедрение импульсных спектрометров ЯМР в повседневную практику существенно расширило экспериментальные возможности этого вида спектроскопии. В частности, запись спектров ЯМР 13C растворов - важнейшего для химии изотопа - теперь является фактически привычной процедурой. Обычным явлением стало также детектирование сигналов от ядер, интенсивность сигналов ЯМР которых во много раз меньше интенсивности для сигналов от 1H, в том числе и в твердой фазе.
Спектры ЯМР высокого разрешения обычно состоят из узких, хорошо разрешенных линий (сигналов), соответствующих магнитным ядрам в различном химическом окружении. Интенсивности (площади) сигналов при записи спектров пропорциональны числу магнитных ядер в каждой группировке, что дает возможность проводить количественный анализ по спектрам ЯМР без предварительной калибровки.
Еще одна особенность ЯМР - влияние обменных процессов, в которых участвуют резонирующие ядра, на положение и ширину резонансных сигналов. Таким образом, по спектрам ЯМР можно изучать природу таких процессов. Линии ЯМР в спектрах жидкостей обычно имеют ширину 0,1 - 1 Гц (ЯМР высокого разрешения), в то время как те же самые ядра, исследуемые в твердой фазе, будут обусловливать появление линий шириной порядка 1 • 104 Гц (отсюда понятие ЯМР широких линий).
В спектроскопии ЯМР высокого разрешения имеются два главных источника информации о строении и динамике молекул:
• химический сдвиг;
• константы спин-спинового взаимодействия.

2. Химический сдвиг

В реальных условиях резонирующие ядра, сигналы ЯМР которых детектируются, являются составной частью атомов или молекул. При помещении исследуемых веществ в магнитное поле (H0) возникает диамагнитный момент атомов (молекул), обусловленный орбитальным движением электронов. Это движение электронов образует эффективные токи и, следовательно, создает вторичное магнитное поле, пропорциональное в соответствии с законом Ленца полю H0 и противоположно направленное. Данное вторичное поле действует на ядро. Таким образом, локальное поле в том месте, где находится резонирующее ядро,

H = Но(1-), (4)

где - безразмерная постоянная, называемая постоянной экранирования и не зависящая от H0., но сильно зависящая от химического (электронного) окружения; она характеризует уменьшение Hлок по сравнению с H0.
Величина  меняется от значения порядка 10-5 для протона до значений порядка 10-2 для тяжелых ядер. С учетом выражения для Hлок имеем

(5)

Эффект экранирования заключается в уменьшении расстояния между уровнями ядерной магнитной энергии или, другими словами, приводит к сближению зеемановских уровней (рис. 4). При этом кванты энергии, вызывающие переходы между уровнями, становятся меньше и, следовательно, резонанс наступает при меньших частотах (см. выражение (5)). Если проводить эксперимент, изменяя поле H0 до тех пор, пока не наступит резонанс, то напряженность приложенного поля должна иметь большую величину по сравнению со случаем, когда ядро не экранировано.

В подавляющем большинстве спектрометров ЯМР запись спектров осуществляется при изменении поля слева направо, поэтому сигналы (пики) наиболее экранированных ядер должны находиться в правой части спектра.
Смещение сигнала в зависимости от химического окружения, обусловленное различием в константах экранирования, называется химическим сдвигом.
Впервые сообщения об открытии химического сдвига появились в нескольких публикациях 1950 - 1951 годов. Среди них необходимо выделить работу Арнольда с соавторами (1951 год), получивших первый спектр с отдельными линиями, соответствующими химически различным положениям одинаковых ядер 1H в одной молекуле. Речь идет об этиловом спирте CH3CH2OH, типичный спектр ЯМР 1H которого при низком разрешении показан на рис. 5.
В этой молекуле три типа протонов: три протона метильной группы CH3-, два протона метиленовой группы -CH2- и один протон гидроксильной группы -OH. Видно, что три отдельных сигнала соответствуют трем типам протонов. Так как интенсивность сигналов находится в соотношении 3:2: 1, то расшифровка спектра (отнесение сигналов) не представляет труда.

Поскольку химические сдвиги нельзя измерять в абсолютной шкале, то есть относительно ядра, лишенного всех его электронов, то в качестве условного нуля используется сигнал эталонного соединения. Обычно значения химического сдвига для любых ядер приводятся в виде безразмерного параметра , определяемого следующим образом:

(6)

В реальных условиях эксперимента более точно можно измерить частоту, а не поле, поэтому  обычно находят из выражения

(7)

где v - vЭТ есть разность химических сдвигов для образца и эталона, выраженная в единицах частоты (Гц); в этих единицах обычно производится калибровка спектров ЯМР.
Строго говоря, следовало бы пользоваться не v0 - рабочей частотой спектрометра (она обычно фиксирована), а частотой vЭТ, то есть абсолютной частотой, на которой наблюдается резонансный сигнал эталона. Однако вносимая при такой замене ошибка очень мала, так как v0 и vЭT почти равны (отличие составляет 10-5, то есть на величину а для протона). Поскольку разные спектрометры ЯМР работают на разных частотах v0 (и, следовательно, при различных полях H0), очевидна необходимость выражения в безразмерных единицах.
За единицу химического сдвига принимается одна миллионная доля напряженности поля или резонансной частоты (м.д.). В зарубежной литературе этому сокращению соответствует ppm (parts per million). Для большинства ядер, входящих в состав диамагнитных соединений, диапазон химических сдвигов их сигналов составляет сотни и тысячи м.д., достигая 20000 м.д. в случае ЯМР 59Co (кобальта). В спектрах 1H сигналы протонов подавляющего числа соединений лежат в интервале 0-10 м.д.

. Спин-спиновое взаимодействие

В 1951 - 1953 годах при записи спектров ЯМР ряда жидкостей обнаружилось, что в спектрах некоторых веществ больше линий, чем это следует из простой оценки числа неэквивалентных ядер. Один из первых примеров - это резонанс на фторе в молекуле POCI2F. Спектр 19F состоит из двух линий равной интенсивности, хотя в молекуле есть только один атом фтора (рис. 6). Молекулы других соединений давали симметричные мультиплетные сигналы (триплеты, квартеты и т.д.).

Другим важным фактором, обнаруженным в таких спектрах, было то, что расстояние между линиями, измеренное в частотной шкале, не зависит от приложенного поля H0, вместо того чтобы быть ему пропорциональным, как должно быть в случае, если бы мультиплетность возникала из-за различия в константах экранирования.
Рэмзи и Парселл в 1952 году первыми объяснили это взаимодействие, показав, что оно обусловлено механизмом косвенной связи через электронное окружение. Ядерный спин стремится ориентировать спины электронов, окружающих данное ядро. Те, в свою очередь, ориентируют спины других электронов и через них - спины других ядер. Энергия спин-спинового взаимодействия обычно выражается в герцах (то есть постоянную Планка принимают за единицу энергии, исходя из того, что E=h). Ясно, что нет необходимости (в отличие от химического сдвига) выражать ее в относительных единицах, так как обсуждаемое взаимодействие, как отмечалось выше, не зависит от напряженности внешнего поля. Величину взаимодействия можно определить измеряя расстояние между компонентами соответствующего мультиплета.
Простейшим примером расщепления из-за спин-спиновой связи, с которым можно встретиться, является резонансный спектр молекулы, содержащей два сорта магнитных ядер А и Х. Ядра А и Х могут представлять собой как различные ядра, так и ядра одного изотопа (например, 1H) в том случае, когда химические сдвиги между их резонансными сигналами велики.
На рис. 7 показано, как выглядит спектр ЯМР, если оба ядра, то есть А и Х, имеют спин, равный 1/2. Расстояние между компонентами в каждом дублете называют константой спин-спинового взаимодействия и обычно обозначают как J(Гц); в данном случае это константа JАХ.

Возникновение дублетов обусловлено тем, что каждое ядро расщепляет резонансные линии соседнего ядра на 2I + 1 компонент. Разности энергий между различными спиновыми состояниями так малы, что при тепловом равновесии вероятности этих состояний в соответствии с больцмановским распределением оказываются почти равными. Следовательно, интенсивности всех линий мультиплета, получающегося от взаимодействия с одним ядром, будут равны. В случае, когда имеется n эквивалентных ядер (то есть одинаково экранированных, поэтому их сигналы имеют одинаковый химический сдвиг), резонансный сигнал соседнего ядра расщепляется на 2nI+ 1 линий.[№7]

4. Исследование МР томографии и устройство МР томографа

Прежде всего пациента помещают внутрь большого магнита, где имеется довольно сильное постоянное (статическое) магнитное поле, ориентированное в большинстве аппаратов вдоль тела пациента. Под воздействием этого поля ядра атомов водорода в теле пациента, которые представляют собой маленькие магнитики, каждый со своим слабым магнитным полем, ориентируются определенным образом относительно сильного поля магнита. Добавляя слабое переменное магнитное поле к статическому магнитному полю, выбирают область, изображение которую надо получить.
Затем пациента облучают радиоволнами, причем частоту радиоволн подстраивают таким образом, чтобы протоны в теле пациента могли поглотить часть энергии радиоволн и изменить ориентацию своих магнитных полей относительно направления статического магнитного поля. Сразу же после прекращения облучения пациента радиоволнами протоны станут возвращаться в свои первоначальные состояния, излучая полученную энергию, и это переизлучение будет вызывать появление электрического тока в приемных катушках томографа.
Зарегистрированные токи являются МР сигналами, к. преобразуются компьютером и используются для построения (реконструкции) МРТ.
Соответственно этапам исследования основными компонентами любого МР томографа являются:
магнит, создающий постоянное (статическое), так называемое внешнее, магнитное поле, в которое помещают пациента
градиентные катушки, создающие слабое переменное магнитное поле в центральной части основного магнита, называемое градиентным, которое позволяет выбрать область исследования тела пациент
радиочастотные катушки - передающие, используемые для создания возбуждения в теле пациента, и приемные - для регистрации ответа возбужденных участков
компьютер, который управляет работой градиентной и радиочастотной катушек, регистрирует измеренные сигналы, обрабатывает их, записывает в свою память и использует для реконструкции МРТ.
Всякое М поле характеризуется индукцией М поля, которую обозначают В. Единицей измерения является 1 Тл (тесла).
В МРТ в зависимости от величины постоянного магнитного поля различают несколько типов томографов
со сверхслабым полем 0,01 Тл - 0,1 Тл
со слабым полем 0,1 - 0,5 Тл
с средним полем 0,5 - 1.0 Тл
с сильным полем 1.0 - 2,0 Тл
со сверхсильным полем >2,0 Тл

. Физические основы явления ЯМР

Явление ЯМР связано с поведением в магнитном поле магнитных моментов атомных ядер. Ядро атом состоит из протонов и нейтронов. Все частицы постоянно вращаются вокруг своей оси и обладают поэтому собственным моментом количества движения - спином s. При этом собственный положительный заряд протона вращается вместе с ним и создает по закону электромагнитной индукции собственное магнитное поле. Таким образом собственное магнитное поле протона похоже на поле постоянного магнита и представляет собой магнитный диполь с северным и южным полюсами. Когда пациента помещают внутрь сильного магнитного поля МР-томографа, все маленькие протонные магниты тела разворачиваются в направлении внешнего поля. Помимо этого, магнитные оси каждого протона начинают вращаться вокруг направления внешнего магнитного поля. Это специфическое вращение называется прецессией, а его частоту - резонансной частотой или частотой Лармора. Частота Лармора пропорциональна силе внешнего магнитного поля и составляет для ядер атома водорода 42,58 МГц/Тс.
Большинство магнитных моментов протонов прецессируют в сторону «севера», т.е. в направлении, параллельном внешнему магнитному полю. Их называют «параллельными протонами». Оставшаяся меньшая часть М моментов протонов прецессирует свои М моменты в сторону «юга», т.е. практически антипараллельно внешнему маг. полю, это «антипараллельные протоны». В результате в тканях пациента создается суммарный магнитный момент: ткани намагничиваются, и их магнетизм (М) ориентируется точно параллельно внешнему магнитному полю В0. Величина М определяется избытком параллельных протонов, который пропорционален силе внешнего М поля, но он всегда крайне мал. М также пропорционален числу протонов в единице объема ткани, т.е. плотности протонов. Огромное число (примерно 1022 в мл воды) содержащихся в большинстве тканей протонов обусловливает тот факт, что чистый магнитный момент достаточно велик, для того чтобы индуцировать электрический ток в расположенной вне пациента принимающей катушке. Эти индуцированные «МР-сигналы» используются для реконструкции МР-изображения.
Похожие материалы:
    Реферат: Магниторезонансная томография Реферат: Магниторезонансная томография
    Магнитно-резонансная томография - один из самых перспективных и быстро совершенствующихся методов современной диагностики. Опираясь на последние достижения электроники, криогенной техники и новейшие информационные технологии, МР томография позволяет за

    Реферат: ПРИНЦИПЫ МАГНИТНО-РЕЗОНАНСНОЙ ТОМОГРАФИИ Реферат: ПРИНЦИПЫ МАГНИТНО-РЕЗОНАНСНОЙ ТОМОГРАФИИ
    Явление ЯМР было открыто сравнительно недавно в 1946 году, за открытие которого F. Bloch и E. Purcell получили Нобелевскую премию. Однако метод МРТ вышел за рамки лабораторных исследований совсем недавно - в начале 80-х годов и к настоящему времени

    Введение в курс спектроскопии ЯМР - Гюнтер Х. - 1984 год - 478 с. Введение в курс спектроскопии ЯМР - Гюнтер Х. - 1984 год - 478 с.
    Описание: Одно из лучших учебных пособий по спектроскопии ЯМР. Автор – известный ученый из ФРГ. Большую справочную ценность книге придают таблицы типичных значений химических сдвигов и констант спин-спинового взаимодействия ядер в основных структурных

    Реферат: Магнитно-резонансная томография Реферат: Магнитно-резонансная томография
    Магнитно-резонансная томография (МРТ) - метод получения изображения внутренних структур тела человека при помощи магнитно-резонансного томографа. Метод позволяет оценивать как анатомические, так и функциональные особенности строения.

    Магнитотерапия - Колтовой Н.А. - 2017 год Магнитотерапия - Колтовой Н.А. - 2017 год
    В книге рассматриваются вопросы воздействия магнитным полем на живые организмы, магнитотерапия, свойства омагниченной воды, регистрация магнитного поля человека.

    Основы МРТ - Джозеф П. Хорнак - 2005 год Основы МРТ - Джозеф П. Хорнак - 2005 год
    Магнитно-резонансная томография (МРТ) - это метод отображения, используемый, главным образом, в медицинских установках, для получения высококачественных изображений органов человеческого тела. МРТ основана на принципах ядерно-магнитного резонанса (ЯМР),

    Реферат: Метод магнитно-резонансной томографии Реферат: Метод магнитно-резонансной томографии
    У метода МР - томографии не было определенной даты основания. Скорее историю развития метода можно охарактеризовать долгим периодом накопления знаний благодаря работам многих исследователей, физиков и математиков, что позволило в конце 20 в. применить

    Интроскопия на основе ядерного магнитного резонанса - Сороко Л.М. - 1986 го ... Интроскопия на основе ядерного магнитного резонанса - Сороко Л.М. - 1986 го ...
    Последовательно изложены физико-математические основы интроскопии при помощи ядерного магнитного резонанса (ЯМР-интроскопии) и описана аппаратура, используемая в этом виде интроскопии. Дан краткий обзор применения ЯМР-интроскопии в медицине и для

    Постоянные магнитные поля и их применение в медицине - Гуляр С.А., Лимански ... Постоянные магнитные поля и их применение в медицине - Гуляр С.А., Лимански ...
    Монография представляет собой первое профессиональное издание, обосновывающее применение переносимых магнитов с лечебной целью. На основании экспериментальных и клинических данных, имеющихся в современной литературе, своевременно обращается внимание на

    Реферат: Магнитные наночастицы, как средство влияния на релаксационные свой ... Реферат: Магнитные наночастицы, как средство влияния на релаксационные свой ...
    На сегодняшний день невозможно представить современную медицину без лучевой диагностики, включающую в себя протонно-эмиссионную томографию, рентгеновскую и магнитно- резонансную томографию (МРТ). Внедрение в клиническую практику метода МРТ позволило


Добавление комментария

Ваше Имя:
Ваш E-Mail:

Код:
Включите эту картинку для отображения кода безопасности
обновить, если не виден код
Введите код: